分享
2023届自治区兵团第二师华山中学高三下学期第一次联考数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 自治区 兵团 第二 华山 中学 下学 第一次 联考 数学试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( ) A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养 C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强 2.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=( ) A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2} 3.已知奇函数是上的减函数,若满足不等式组,则的最小值为( ) A.-4 B.-2 C.0 D.4 4.函数的图象可能是下列哪一个?( ) A. B. C. D. 5.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★ ,◆◆,则(◆2020)(2020★2018)的值为( ) A. B. C. D. 6.命题“”的否定是( ) A. B. C. D. 7. “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( ) A. B. C. D. 8.已知函数,则的值等于( ) A.2018 B.1009 C.1010 D.2020 9.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( ) A. B. C. D. 10.已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为(    ) A. B. C. 或 D. 或 11.设是虚数单位,若复数,则( ) A. B. C. D. 12.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.若正实数,,满足,则的最大值是__________. 14.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______. 15.已知函数的部分图象如图所示,则的值为____________. 16.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知,且的解集为. (1)求实数,的值; (2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围. 18.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且. (Ⅰ)求证:面; (Ⅱ)求证:平面平面; (Ⅲ)求该几何体的体积. 19.(12分)已知函数,其中为自然对数的底数,. (1)若曲线在点处的切线与直线平行,求的值; (2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由. 20.(12分)已知数列满足,,,且. (1)求证:数列为等比数列,并求出数列的通项公式; (2)设,求数列的前项和. 21.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示: 等级 不合格 合格 得分 频数 6 24 (Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关? 是否合格 性别 不合格 合格 总计 男生 女生 总计 (Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望; (Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案? 附表及公式:,其中. 22.(10分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据所给的雷达图逐个选项分析即可. 【题目详解】 对于A,甲的数据分析素养为100分,乙的数据分析素养为80分, 故甲的数据分析素养优于乙,故A正确; 对于B,乙的数据分析素养为80分,数学建模素养为60分, 故乙的数据分析素养优于数学建模素养,故B正确; 对于C,甲的六大素养整体水平平均得分为 , 乙的六大素养整体水平均得分为,故C正确; 对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误; 故选:D 【答案点睛】 本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题. 2、A 【答案解析】 解出集合A和B即可求得两个集合的并集. 【题目详解】 ∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3}, B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2}, ∴A∪B={﹣2,﹣1,0,1,2,3}. 故选:A. 【答案点睛】 此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素. 3、B 【答案解析】 根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【题目详解】 奇函数是上的减函数,则,且,画出可行域和目标函数, ,即,表示直线与轴截距的相反数, 根据平移得到:当直线过点,即时,有最小值为. 故选:. 【答案点睛】 本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键. 4、A 【答案解析】 由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果. 【题目详解】 由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A. 【答案点睛】 本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除. 5、B 【答案解析】 根据新运算的定义分别得出◆2020和2020★2018的值,可得选项. 【题目详解】 由()★★ ,得(+2)★★, 又★,所以★,★,★, ,以此类推,2020★2018★2018, 又◆◆,◆, 所以◆,◆,◆, ,以此类推,◆2020, 所以(◆2020)(2020★2018), 故选:B. 【答案点睛】 本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题. 6、D 【答案解析】 根据全称命题的否定是特称命题,对命题进行改写即可. 【题目详解】 全称命题的否定是特称命题,所以命题“,”的否定是:,. 故选D. 【答案点睛】 本题考查全称命题的否定,难度容易. 7、C 【答案解析】 先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率. 【题目详解】 解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个, 则基本事件总数为, 则6和28恰好在同一组包含的基本事件个数, ∴6和28不在同一组的概率. 故选:C. 【答案点睛】 本题考查古典概型的概率的求法,涉及实际问题中组合数的应用. 8、C 【答案解析】 首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可. 【题目详解】 解: . , , 的周期为, ,, ,, . . 故选:C 【答案点睛】 本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题. 9、C 【答案解析】 由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案. 【题目详解】 由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥, 其底面面积,高, 故体积, 故选:. 【答案点睛】 本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状. 10、D 【答案解析】 由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程. 【题目详解】 由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q= 故选:D. 【答案点睛】 本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练. 11、A 【答案解析】 结合复数的除法运算和模长公式求解即可 【题目详解】 ∵复数,∴,,则, 故选:A. 【答案点睛】 本题考查复数的除法、模长、平方运算,属于基础题 12、B 【答案解析】 利用复数的除法运算化简z, 复数在复平面中对应的点到原点的距离为利用模长公式即得解. 【题目详解】 由题意知复数在复平面中对应的点到原点的距离为 故选:B 【答案点睛】 本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 分析:将题中的式子进行整理,将当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果. 详解:,当且仅当等号成立,故答案是. 点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-------相乘,即可得结果. 14、 【答案解析】 作出图像,设点,根据已知可得,,且,可解出,计算即得. 【题目详解】 如图,设,圆心坐标为,可得, ,, ,,解得,, 即的长是. 故答案为: 【答案点睛】 本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想. 15、 【答案解析】 由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及. 【题目详解】

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开