分享
2023届张掖市重点中学高三下学期第六次检测数学试卷(含解析).doc
下载文档

ID:20062

大小:1.85MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 张掖市 重点中学 下学 第六 检测 数学试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数在区间上的大致图象如图所示,则可能是( ) A. B. C. D. 2.设等差数列的前项和为,若,则( ) A.23 B.25 C.28 D.29 3.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是( ) A. B. C. D. 4.已知等比数列满足,,等差数列中,为数列的前项和,则( ) A.36 B.72 C. D. 5.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则( ) A.10 B.11 C.12 D.13 6.在关于的不等式中,“”是“恒成立”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 7.设M是边BC上任意一点,N为AM的中点,若,则的值为( ) A.1 B. C. D. 8.点在所在的平面内,,,,,且,则( ) A. B. C. D. 9.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为( ) A. B. C. D. 10.若实数、满足,则的最小值是( ) A. B. C. D. 11.等差数列的前项和为,若,,则数列的公差为( ) A.-2 B.2 C.4 D.7 12.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在各项均为正数的等比数列中,,且,成等差数列,则___________. 14.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______. 15.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________. 16.曲线在处的切线的斜率为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知数列满足:对一切成立. (1)求数列的通项公式; (2)求数列的前项和. 18.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:. (1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数); (2)记每日生产平均成本求证:; (3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元. 19.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点. (1)求证:平面; (2)求三棱锥的体积. 20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下: 甲公司员工:410,390,330,360,320,400,330,340,370,350 乙公司员工:360,420,370,360,420,340,440,370,360,420 每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元. (1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数; (2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望; (3)根据题中数据估算两公司被抽取员工在该月所得的劳务费. 21.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强. 安全意识强 安全意识不强 合计 男性 女性 合计 (Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率; (Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关; (Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望. 附:,其中 0.010 0.005 0.001 6.635 7.879 10.828 22.(10分)已知数列的前项和为,且满足. (Ⅰ)求数列的通项公式; (Ⅱ)证明:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 根据特殊值及函数的单调性判断即可; 【题目详解】 解:当时,,无意义,故排除A; 又,则,故排除D; 对于C,当时,,所以不单调,故排除C; 故选:B 【答案点睛】 本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题. 2、D 【答案解析】 由可求,再求公差,再求解即可. 【题目详解】 解:是等差数列 ,又, 公差为, , 故选:D 【答案点睛】 考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题. 3、D 【答案解析】 易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围. 【题目详解】 易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即 在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴. 故选D. 【答案点睛】 本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难. 4、A 【答案解析】 根据是与的等比中项,可求得,再利用等差数列求和公式即可得到. 【题目详解】 等比数列满足,,所以,又,所以,由等差数列的性质可得. 故选:A 【答案点睛】 本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题. 5、D 【答案解析】 利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解. 【题目详解】 由,,构成等差数列可得 即 又 解得: 又 所以时,. 故选:D 【答案点睛】 本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题. 6、C 【答案解析】 讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案. 【题目详解】 解:当时,,由开口向上,则恒成立; 当恒成立时,若,则 不恒成立,不符合题意, 若 时,要使得恒成立,则 ,即 . 所以“”是“恒成立”的充要条件. 故选:C. 【答案点睛】 本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件. 7、B 【答案解析】 设,通过,再利用向量的加减运算可得,结合条件即可得解. 【题目详解】 设, 则有. 又, 所以,有. 故选B. 【答案点睛】 本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题. 8、D 【答案解析】 确定点为外心,代入化简得到,,再根据计算得到答案. 【题目详解】 由可知,点为外心, 则,,又, 所以① 因为,② 联立方程①②可得,,,因为, 所以,即. 故选: 【答案点睛】 本题考查了向量模长的计算,意在考查学生的计算能力. 9、A 【答案解析】 先求出平移后的函数解析式,结合图像的对称性和得到A和. 【题目详解】 因为关于轴对称,所以,所以,的最小值是.,则,所以. 【答案点睛】 本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系. 10、D 【答案解析】 根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案 【题目详解】 作出不等式组所表示的可行域如下图所示: 联立,得,可得点, 由得,平移直线, 当该直线经过可行域的顶点时,该直线在轴上的截距最小, 此时取最小值,即. 故选:D. 【答案点睛】 本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题. 11、B 【答案解析】 在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差. 【题目详解】 在等差数列的前项和为,则 则 故选:B 【答案点睛】 本题考查等差数列中求由已知关系求公差,属于基础题. 12、B 【答案解析】 根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果. 【题目详解】 由图象可得,函数的最小正周期为,, , 则,,取, ,则, ,,可得, 当时,. 故选:B. 【答案点睛】 本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可. 【题目详解】 因为,成等差数列, 所以, 由等比数列通项公式得, , 所以, 解得或, 因为,所以, 所以等比数列的通项公式为 . 故答案为: 【答案点睛】 本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识 综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题. 14、 【答案解析】 设,判断 为偶函数,考虑x>0时,的解析式和零点个数, 利用导数分析函数的单调性,作函数大致图象,即可得到的范围. 【题目详解】 设, 则在是偶函数, 当时,, 由得, 记, ,, 故函数在增,而, 所以在减,在增,, 当时,,当时,, 因此的图象为 因此实数的取值范围是. 【答案点睛】 本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题. 15、 【答案解析】 根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可. 【题目详解】 解:由,其中,, 可得,则,令,, 可得.① 又令数列中的,,, 根据等差数列的性质,可得, 所以.② 根据①②得出,. 所以. 故答案为. 【答案点睛】 本题主要考查等差数列、等比数列的性质,属于基础题. 16、 【答案解析】 求出函数的导数,利用导数的几何意义令,即可求出切线斜率. 【题目详解】 , , ,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开