温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖南省
长沙市
礼教
集团
考前
热身
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,是单位向量,若,则( )
A. B. C. D.
2.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )
A. B. C. D.
3.一个几何体的三视图如图所示,则该几何体的表面积为( )
A. B. C. D.84
4.已知向量,,则与共线的单位向量为( )
A. B.
C.或 D.或
5.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是( )
A.甲的数据分析素养高于乙
B.甲的数学建模素养优于数学抽象素养
C.乙的六大素养中逻辑推理最差
D.乙的六大素养整体平均水平优于甲
6.已知函数若恒成立,则实数的取值范围是( )
A. B. C. D.
7.已知满足,,,则在上的投影为( )
A. B. C. D.2
8.若集合,,则=( )
A. B. C. D.
9.要得到函数的图象,只需将函数的图象
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
10.函数,,则“的图象关于轴对称”是“是奇函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
11.设点是椭圆上的一点,是椭圆的两个焦点,若,则( )
A. B. C. D.
12.设,为非零向量,则“存在正数,使得”是“”的( )
A.既不充分也不必要条件 B.必要不充分条件
C.充分必要条件 D.充分不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,,,若,则的取值范围是_______.
14.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.
15.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.
16.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知三棱柱中,,是的中点,,.
(1)求证:;
(2)若侧面为正方形,求直线与平面所成角的正弦值.
18.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).
(1)请用角表示清洁棒的长;
(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
19.(12分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
20.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).
已知小张该笔贷款年限为20年,月利率为0.004.
(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;
(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);
(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.
参考数据:.
21.(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.
(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;
(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;
(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.
22.(10分)设不等式的解集为M,.
(1)证明:;
(2)比较与的大小,并说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;
【题目详解】
设,,
是单位向量,,
,,
联立方程解得:或
当时,;
当时,;
综上所述:.
故选:C.
【答案点睛】
本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.
2、D
【答案解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.
【题目详解】
双曲线与互为共轭双曲线,
四个顶点的坐标为,四个焦点的坐标为,
四个顶点形成的四边形的面积,
四个焦点连线形成的四边形的面积,
所以,
当取得最大值时有,,离心率,
故选:D.
【答案点睛】
该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.
3、B
【答案解析】
画出几何体的直观图,计算表面积得到答案.
【题目详解】
该几何体的直观图如图所示:
故.
故选:.
【答案点睛】
本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.
4、D
【答案解析】
根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.
【题目详解】
因为,,则,
所以,
设与共线的单位向量为,
则,
解得 或
所以与共线的单位向量为或.
故选:D.
【答案点睛】
本题考查向量的坐标运算以及共线定理和单位向量的定义.
5、D
【答案解析】
根据雷达图对选项逐一分析,由此确定叙述正确的选项.
【题目详解】
对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.
对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.
对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.
对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.
故选:D
【答案点睛】
本小题主要考查图表分析和数据处理,属于基础题.
6、D
【答案解析】
由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.
【题目详解】
因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.
故选:D
【答案点睛】
此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.
7、A
【答案解析】
根据向量投影的定义,即可求解.
【题目详解】
在上的投影为.
故选:A
【答案点睛】
本题考查向量的投影,属于基础题.
8、C
【答案解析】
试题分析:化简集合
故选C.
考点:集合的运算.
9、D
【答案解析】
先将化为,根据函数图像的平移原则,即可得出结果.
【题目详解】
因为,
所以只需将的图象向右平移个单位.
【答案点睛】
本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.
10、B
【答案解析】
根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.
所以,“是奇函数”“的图象关于轴对称”;
若函数是上的偶函数,则,所以,函数的图象关于轴对称.
所以,“的图象关于轴对称”“是奇函数”.
因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.
故选:B.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.
11、B
【答案解析】
∵
∵
∴
∵,
∴
∴
故选B
点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.
12、D
【答案解析】
充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.
【题目详解】
充分性:若存在正数,使得,则,,得证;
必要性:若,则,不一定有正数,使得,故不成立;
所以是充分不必要条件
故选:D
【答案点睛】
本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果.
【题目详解】
设,,,则,
由,得,代入椭圆方程,
得,化简得恒成立,
由此得,即,故.
故答案为:
【答案点睛】
此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 .
14、1
【答案解析】
根据均值的定义计算.
【题目详解】
由题意,∴.
故答案为:1.
【答案点睛】
本题考查均值的概念,属于基础题.
15、
【答案解析】
分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,即可求出线段OP的长.
详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则
∵∠APB的大小恒为定值,
∴t=,∴|OP|=.
故答案为
点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题.
16、
【答案解析】
先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.
【题目详解】
由已知及正弦定理,得,所以,
,取AB中点E,