分享
2023届湖南省会同一中高三二诊模拟考试数学试卷(含解析).doc
下载文档

ID:19982

大小:2.23MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 湖南 省会 同一 中高 三二诊 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面,,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是( ) A. B.3 C. D. 2.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为( ) A.2 B.4 C.5 D.6 3.函数在上的大致图象是( ) A. B. C. D. 4.若复数满足(是虚数单位),则( ) A. B. C. D. 5.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为( ) A.12 B. C. D. 6.已知函数,则( ) A.函数在上单调递增 B.函数在上单调递减 C.函数图像关于对称 D.函数图像关于对称 7.已知奇函数是上的减函数,若满足不等式组,则的最小值为( ) A.-4 B.-2 C.0 D.4 8.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( ) A.AC⊥BE B.EF平面ABCD C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值 9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为   A. B. C. D. 10.已知复数(为虚数单位)在复平面内对应的点的坐标是( ) A. B. C. D. 11.若,则函数在区间内单调递增的概率是( ) A. B. C. D. 12.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为(  ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____. 14.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______. 15.的展开式中的系数为____. 16.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求直线的普通方程和曲线的直角坐标方程; (2)设点,直线与曲线交于两点,求的值. 18.(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列.定义随机变量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X来衡量家长对小孩饮食习惯的了解程度. (1)若参与游戏的家长对小孩的饮食习惯完全不了解. (ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率; (ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程); (2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由. 19.(12分)已知函数,不等式的解集为. (1)求实数,的值; (2)若,,,求证:. 20.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为. (Ⅰ)写出曲线的极坐标方程,并指出是何种曲线; (Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围. 21.(12分)已知函数. (Ⅰ)当时,求不等式的解集; (Ⅱ)若存在满足不等式,求实数的取值范围. 22.(10分)已知为等差数列,为等比数列,的前n项和为,满足,,,. (1)求数列和的通项公式; (2)令,数列的前n项和,求. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得到,进而得到所求最小值. 【题目详解】 如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值. 设,则,化简得:, 则,解得:, 即点的轨迹上的点到的距离的最小值是. 故选:. 【答案点睛】 本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值. 2、B 【答案解析】 由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解. 【题目详解】 由偶函数满足, 可得的图像关于直线对称且关于轴对称, 函数()的图像也关于对称, 函数的图像与函数()的图像的位置关系如图所示, 可知两个图像有四个交点,且两两关于直线对称, 则与的图像所有交点的横坐标之和为4. 故选:B 【答案点睛】 本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题. 3、D 【答案解析】 讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断. 【题目详解】 当时,,则, 所以函数在上单调递增, 令,则, 根据三角函数的性质, 当时,,故切线的斜率变小, 当时,,故切线的斜率变大,可排除A、B; 当时,,则, 所以函数在上单调递增, 令 ,, 当时,,故切线的斜率变大, 当时,,故切线的斜率变小,可排除C, 故选:D 【答案点睛】 本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题. 4、B 【答案解析】 利用复数乘法运算化简,由此求得. 【题目详解】 依题意,所以. 故选:B 【答案点睛】 本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题. 5、C 【答案解析】 过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可. 【题目详解】 在和中,,所以,则, 过作于,连接,显然,则,且, 又因为,所以平面, 所以, 当最大时,取得最大值,取的中点,则, 所以, 因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8, 所以的最大值为椭圆的短轴长的一半,故最大值为, 所以最大值为,故的最大值为. 故选:C. 【答案点睛】 本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题. 6、C 【答案解析】 依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性; 【题目详解】 解:由, ,所以函数图像关于对称, 又,在上不单调. 故正确的只有C, 故选:C 【答案点睛】 本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题. 7、B 【答案解析】 根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【题目详解】 奇函数是上的减函数,则,且,画出可行域和目标函数, ,即,表示直线与轴截距的相反数, 根据平移得到:当直线过点,即时,有最小值为. 故选:. 【答案点睛】 本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键. 8、D 【答案解析】 A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假. 【题目详解】 A.因为,所以平面, 又因为平面,所以,故正确; B.因为,所以,且平面,平面, 所以平面,故正确; C.因为为定值,到平面的距离为, 所以为定值,故正确; D.当,,取为,如下图所示: 因为,所以异面直线所成角为, 且, 当,,取为,如下图所示: 因为,所以四边形是平行四边形,所以, 所以异面直线所成角为,且, 由此可知:异面直线所成角不是定值,故错误. 故选:D. 【答案点睛】 本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内. 9、C 【答案解析】 由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值. 【题目详解】 解:初始值,,程序运行过程如下表所示: , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 跳出循环,输出的值为 其中① ② ①—②得 . 故选:. 【答案点睛】 本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题. 10、A 【答案解析】 直接利用复数代数形式的乘除运算化简,求得的坐标得出答案. 【题目详解】 解:, 在复平面内对应的点的坐标是. 故选:A. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 11、B 【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B. 12、A 【答案解析】 求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率. 【题目详解】 不妨设双曲线的一条渐近线与圆交于, 因为,所以圆心到的距离为:, 即,因为,所以解得. 故选A. 【答案点睛】 本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 做 中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开