温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖北省
教育
第二次
诊断
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为( )
A. B. C. D.
2.已知数列满足,且成等比数列.若的前n项和为,则的最小值为( )
A. B. C. D.
3.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )
A.或 B.
C.或 D.
4.已知函数的图象如图所示,则下列说法错误的是( )
A.函数在上单调递减
B.函数在上单调递增
C.函数的对称中心是
D.函数的对称轴是
5.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )
A.12种 B.24种 C.36种 D.48种
6.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )
A.60种 B.70种 C.75种 D.150种
7.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是( )
A., B.,
C., D.,
8.已知平面向量,满足,,且,则( )
A.3 B. C. D.5
9.在等差数列中,若,则( )
A.8 B.12 C.14 D.10
10.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
11.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为( )
A. B. C. D.
12.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列满足,则________.
14.在一底面半径和高都是的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的种子,则取出了带麦锈病种子的概率是_____.
15.已知,,且,则的最小值是______.
16.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.
18.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.
(1)求的值;
(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.
19.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;
(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.
附表及公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,
20.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.
()求与平面所成角的正弦.
()求二面角的余弦值.
21.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
22.(10分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.
【题目详解】
由题意将代入双曲线的方程,得则,由,得的周长为
,
设的内切圆的半径为,则,
故选:B
【答案点睛】
本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.
2、D
【答案解析】
利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.
【题目详解】
根据题意,可知为等差数列,公差,
由成等比数列,可得,
∴,解得.
∴.
根据单调性,可知当或时,取到最小值,最小值为.
故选:D.
【答案点睛】
本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.
3、C
【答案解析】
根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.
【题目详解】
由得,.
令,
则,
令,解得,
所以当时,,则在内单调递增;
当时,,则在内单调递减;
所以在处取得极大值,即最大值为,
则的图象如下图所示:
由有且仅有一个不动点,可得得或,
解得或.
故选:C
【答案点睛】
本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.
4、B
【答案解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.
【题目详解】
由图象可得,函数的周期,所以.
将点代入中,得,解得,由,可得,所以.
令,得,
故函数在上单调递减,
当时,函数在上单调递减,故A正确;
令,得,
故函数在上单调递增.
当时,函数在上单调递增,故B错误;
令,得,故函数的对称中心是,故C正确;
令,得,故函数的对称轴是,故D正确.
故选:B.
【答案点睛】
本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.
5、C
【答案解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.
【题目详解】
把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。
故选:C.
【答案点睛】
本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.
6、C
【答案解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.
【题目详解】
解:根据题意,从6名男干部中选出2名男干部,有种取法,
从5名女干部中选出1名女干部,有种取法,
则有种不同的选法;
故选:C.
【答案点睛】
本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.
7、D
【答案解析】
根据指数函数的图象和特征以及图象的平移可得正确的选项.
【题目详解】
从题设中提供的图像可以看出,
故得,
故选:D.
【答案点睛】
本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.
8、B
【答案解析】
先求出,再利用求出,再求.
【题目详解】
解:
由,所以
,
,,
故选:B
【答案点睛】
考查向量的数量积及向量模的运算,是基础题.
9、C
【答案解析】
将,分别用和的形式表示,然后求解出和的值即可表示.
【题目详解】
设等差数列的首项为,公差为,
则由,,得解得,,
所以.故选C.
【答案点睛】
本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.
10、C
【答案解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.
考点:频率分布直方图及其应用.
11、C
【答案解析】
利用线线、线面、面面相应的判定与性质来解决.
【题目详解】
如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线
平行于平面与平面的交线时也有,,故②错误;若,则垂直平面
内以及与平面平行的所有直线,故③正确;若,则存在直线且,因
为,所以,从而,故④正确.
故选:C.
【答案点睛】
本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.
12、C
【答案解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.
【题目详解】
∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.
故选:C.
【答案点睛】
本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
项和转化可得,讨论是否满足,分段表示即得解
【题目详解】
当时,由已知,可得,
∵,①
故,②
由①-②得,
∴.
显然当时不满足上式,
∴
故答案为:
【答案点睛】
本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.
14、
【答案解析】
求解占圆柱形容器的的总容积的比例求解即可.
【题目详解】
解:由题意可得:取出了带麦锈病种子的概率.
故答案为:.
【答案点睛】
本题主要考查了体积类的几何概型问题,属于基础题.
15、1
【答案解析】
先将前两项利用基