分享
2023届湖北省荆州市松滋第四中学高三一诊考试数学试卷(含解析).doc
下载文档

ID:19966

大小:4.14MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 湖北省 荆州市 松滋 第四 中学 高三一诊 考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( ) A.2 B. C.6 D.8 2.已知,则p是q的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.设函数,则使得成立的的取值范围是( ). A. B. C. D. 4.已知函数,则不等式的解集为( ) A. B. C. D. 5.复数,若复数在复平面内对应的点关于虚轴对称,则等于( ) A. B. C. D. 6.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★ ,◆◆,则(◆2020)(2020★2018)的值为( ) A. B. C. D. 7.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( ) A.甲班的数学成绩平均分的平均水平高于乙班 B.甲班的数学成绩的平均分比乙班稳定 C.甲班的数学成绩平均分的中位数高于乙班 D.甲、乙两班这5次数学测试的总平均分是103 8.若(是虚数单位),则的值为( ) A.3 B.5 C. D. 9.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( ) A. B. C. D. 10.已知向量,,则与的夹角为( ) A. B. C. D. 11.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( ) A. B. C. D. 12.函数的部分图像大致为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线在处的切线方程是_________. 14.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________. 15.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____. 16.已知,(,),则=_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C. (1)求C的方程,并说明C是什么曲线? (2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由. 18.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求曲线的直角坐标方程; (2)设点的极坐标为,直线与曲线的交点为,求的值. 19.(12分)在四棱柱中,底面为正方形,,平面. (1)证明:平面; (2)若,求二面角的余弦值. 20.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,. (1)求证:平面; (2)求证:平面. 21.(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示 . (1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表); (2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望; (3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下: 月份 销售量(万辆) 试预计该品牌汽车在年月份的销售量约为多少万辆? 附:对于一组样本数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,. 22.(10分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示: (1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由; (2)根据统计数据建立一个列联表; (3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系. 附: 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【题目详解】 由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为. 故选A 【答案点睛】 本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 2、B 【答案解析】 根据诱导公式化简再分析即可. 【题目详解】 因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件. 故选:B 【答案点睛】 本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题. 3、B 【答案解析】 由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果. 【题目详解】 由题意知:定义域为, ,为偶函数, 当时,, 在上单调递增,在上单调递减, 在上单调递增,则在上单调递减, 由得:,解得:或, 的取值范围为. 故选:. 【答案点睛】 本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式. 4、D 【答案解析】 先判断函数的奇偶性和单调性,得到,且,解不等式得解. 【题目详解】 由题得函数的定义域为. 因为, 所以为上的偶函数, 因为函数都是在上单调递减. 所以函数在上单调递减. 因为, 所以,且, 解得. 故选:D 【答案点睛】 本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平. 5、A 【答案解析】 先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解. 【题目详解】 因为复数在复平面内对应的点关于虚轴对称,且复数, 所以 所以 故选:A 【答案点睛】 本题主要考查复数的基本运算和几何意义,属于基础题. 6、B 【答案解析】 根据新运算的定义分别得出◆2020和2020★2018的值,可得选项. 【题目详解】 由()★★ ,得(+2)★★, 又★,所以★,★,★, ,以此类推,2020★2018★2018, 又◆◆,◆, 所以◆,◆,◆, ,以此类推,◆2020, 所以(◆2020)(2020★2018), 故选:B. 【答案点睛】 本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题. 7、D 【答案解析】 计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案. 【题目详解】 由题意可得甲班的平均分是104,中位数是103,方差是26.4; 乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确. 因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误. 故选:. 【答案点睛】 本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力. 8、D 【答案解析】 直接利用复数的模的求法的运算法则求解即可. 【题目详解】 (是虚数单位) 可得 解得 本题正确选项: 【答案点睛】 本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力. 9、C 【答案解析】 作,;,由题意,由二倍角公式即得解. 【题目详解】 由题意,,准线:, 作,;, 设, 故,, . 故选:C 【答案点睛】 本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 10、B 【答案解析】 由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果. 【题目详解】 解:由题意得,设与的夹角为, , 由于向量夹角范围为:, ∴. 故选:B. 【答案点睛】 本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围. 11、A 【答案解析】 分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望. 详解:根据题意有,如果交换一个球, 有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球, 红球的个数就会出现三种情况; 如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝, 对应的红球的个数就是五种情况,所以分析可以求得,故选A. 点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果. 12、A 【答案解析】 根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案. 【题目详解】 解:因为, 所以的定义域为, 则, ∴为偶函数,图象关于轴对称,排除选项, 且当时,,排除选项,所以正确. 故选:A. 【答案点睛】 本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 利用导数的运算法则求出导函数,再利用导数的几何意义即可求解. 【题目详解】 求导得, 所以,所以切线方程为 故答案为: 【答案点睛】 本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题. 14、 【答案解析】 求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,,从而可求得,得斜率. 【题目详解】 由得,即 联立得 解得或,∴. 故答案为:. 【答案点睛】 本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开