温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖北省
浠水县
实验
中学
最后
冲刺
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若向量,则( )
A.30 B.31 C.32 D.33
2.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )
A. B. C. D.
3.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )
A. B. C. D.
4.函数(其中是自然对数的底数)的大致图像为( )
A. B. C. D.
5.已知函数则函数的图象的对称轴方程为( )
A. B.
C. D.
6.已知函数满足:当时,,且对任意,都有,则( )
A.0 B.1 C.-1 D.
7.已知平面和直线a,b,则下列命题正确的是( )
A.若∥,b∥,则∥ B.若,,则∥
C.若∥,,则 D.若,b∥,则
8.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是( )
A. B. C. D.
9.双曲线的一条渐近线方程为,那么它的离心率为( )
A. B. C. D.
10.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:
55
57
59
61
68
64
62
59
80
88
98
95
60
73
88
74
86
77
79
94
97
100
99
97
89
81
80
60
79
60
82
95
90
93
90
85
80
77
99
68
如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )
A.6 B.8 C.10 D.12
11.已知数列满足,且成等比数列.若的前n项和为,则的最小值为( )
A. B. C. D.
12.已知角的终边经过点P(),则sin()=
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.
14.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.
15.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.
16.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)选修4-5:不等式选讲
已知函数的最大值为3,其中.
(1)求的值;
(2)若,,,求证:
18.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
19.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.
(1)证明:平面;
(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.
20.(12分)已知a>0,证明:1.
21.(12分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.
(1)求证:平面.
(2)求二面角的余弦值.
22.(10分)已知数列是等差数列,前项和为,且,.
(1)求.
(2)设,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
先求出,再与相乘即可求出答案.
【题目详解】
因为,所以.
故选:C.
【答案点睛】
本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.
2、B
【答案解析】
由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.
【题目详解】
由三视图可知,该三棱锥如图所示:
其中底面是等腰直角三角形,平面,
由三视图知,
因为,,
所以,
所以,
因为为等边三角形,
所以,
所以该三棱锥的四个面中,最大面积为.
故选:B
【答案点睛】
本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.
3、D
【答案解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.
【题目详解】
由题意,直线的斜率为,
可得直线的方程为,
把直线的方程代入双曲线,可得,
设,则,
由的中点为,可得,解答,
又由,即,解得,
所以双曲线的标准方程为.
故选:D.
【答案点睛】
本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.
4、D
【答案解析】
由题意得,函数点定义域为且,所以定义域关于原点对称,
且,所以函数为奇函数,图象关于原点对称,
故选D.
5、C
【答案解析】
,将看成一个整体,结合的对称性即可得到答案.
【题目详解】
由已知,,令,得.
故选:C.
【答案点睛】
本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.
6、C
【答案解析】
由题意可知,代入函数表达式即可得解.
【题目详解】
由可知函数是周期为4的函数,
.
故选:C.
【答案点睛】
本题考查了分段函数和函数周期的应用,属于基础题.
7、C
【答案解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.
【题目详解】
A:当时,也可以满足∥,b∥,故本命题不正确;
B:当时,也可以满足,,故本命题不正确;
C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;
D:当时,也可以满足,b∥,故本命题不正确.
故选:C
【答案点睛】
本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.
8、C
【答案解析】
∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.
∵当x≥1时,为减函数,∵f(log32)=f(2-log32)= f()
且==log34,log34<<3,∴b>a>c,
故选C
9、D
【答案解析】
根据双曲线的一条渐近线方程为,列出方程,求出的值即可.
【题目详解】
∵双曲线的一条渐近线方程为,
可得,∴,
∴双曲线的离心率.
故选:D.
【答案点睛】
本小题主要考查双曲线离心率的求法,属于基础题.
10、D
【答案解析】
根据程序框图判断出的意义,由此求得的值,进而求得的值.
【题目详解】
由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,,所以.
故选:D
【答案点睛】
本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.
11、D
【答案解析】
利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.
【题目详解】
根据题意,可知为等差数列,公差,
由成等比数列,可得,
∴,解得.
∴.
根据单调性,可知当或时,取到最小值,最小值为.
故选:D.
【答案点睛】
本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.
12、A
【答案解析】
由题意可得三角函数的定义可知:
,,则:
本题选择A选项.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.
14、
【答案解析】
计算得到||,||cosα﹣1,解得cosα,根据三角函数的有界性计算范围得到答案.
【题目详解】
由()•()=0 可得 ()•||•||cosα﹣1×2cos||•||cosα﹣1,α为与的夹角.
再由 2•1+4+2×1×2cos7 可得||,
∴||cosα﹣1,解得cosα.
∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得 ||,
故答案为.
【答案点睛】
本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.
15、1
【答案解析】
根据均值的定义计算.
【题目详解】
由题意,∴.
故答案为:1.
【答案点睛】
本题考查均值的概念,属于基础题.
16、
【答案解析】
先还原几何体,再根据柱体体积公式求解
【题目详解】
空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为
【答案点睛】
本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)见解析
【答案解析】
(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.
【题目详解】
(1)∵,
∴.
∴当时,取得最大值.
∴.
(2)由(Ⅰ),得,
.
∵,当且仅当时等号成立,
∴.
令,.
则在上单调递减.∴.
∴当时,.
∴.
【答案点睛】
本题考查了绝对值不等式的解法,属中档题.本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.
18、(1)60;25(2)见解析,2.1(