温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖北省
浠水县
实验
高级中学
第二次
诊断
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是( )
A. B. C. D.
2.的展开式中各项系数的和为2,则该展开式中常数项为
A.-40 B.-20 C.20 D.40
3.已知是函数的极大值点,则的取值范围是
A. B.
C. D.
4.已知复数,其中为虚数单位,则( )
A. B. C.2 D.
5.若,,,则( )
A. B.
C. D.
6.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( )
A. B. C. D.
7.已知不等式组表示的平面区域的面积为9,若点, 则的最大值为( )
A.3 B.6 C.9 D.12
8.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )
A. B. C. D.
9.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )
A. B. C. D.
10.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( )
A.从2000年至2016年,该地区环境基础设施投资额逐年增加;
B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;
C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;
D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.
11.已知集合.为自然数集,则下列表示不正确的是( )
A. B. C. D.
12.设,若函数在区间上有三个零点,则实数的取值范围是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设为椭圆在第一象限上的点,则的最小值为________.
14.如图,已知一块半径为2的残缺的半圆形材料,O为半圆的圆心,,残缺部分位于过点C的竖直线的右侧,现要在这块材料上裁出一个直角三角形,若该直角三角形一条边在上,则裁出三角形面积的最大值为______.
15.若且时,不等式恒成立,则实数a的取值范围为________.
16.已知函数为上的奇函数,满足.则不等式的解集为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,函数的最小值为1.
(1)证明:.
(2)若恒成立,求实数的最大值.
18.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
19.(12分)已知函数.
(1)当时,求函数的值域;
(2)的角的对边分别为且,,求边上的高的最大值.
20.(12分)已知函数在上的最大值为3.
(1)求的值及函数的单调递增区间;
(2)若锐角中角所对的边分别为,且,求的取值范围.
21.(12分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.
(1)求矩阵;
(2)求矩阵的特征值.
22.(10分)已知,,为正数,且,证明:
(1);
(2).
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.
【题目详解】
点的坐标满足方程,
在圆上,
在坐标满足方程,
在圆上,
则作出两圆的图象如图,
设两圆内公切线为与,
由图可知,
设两圆内公切线方程为,
则,
圆心在内公切线两侧,,
可得,,
化为,,
即,
,
的取值范围,故选B.
【答案点睛】
本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.
2、D
【答案解析】
令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D
解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.
故常数项==-40+80=40
3、B
【答案解析】
方法一:令,则,,
当,时,,单调递减,
∴时,,,且,
∴,即在上单调递增,
时,,,且,
∴,即在上单调递减,∴是函数的极大值点,∴满足题意;
当时,存在使得,即,
又在上单调递减,∴时,,所以,
这与是函数的极大值点矛盾.
综上,.故选B.
方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.
4、D
【答案解析】
把已知等式变形,然后利用数代数形式的乘除运算化简,再由复数模的公式计算得答案.
【题目详解】
解:,
则.
故选:D.
【答案点睛】
本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.
5、C
【答案解析】
利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.
【题目详解】
对数函数为上的增函数,则,即;
指数函数为上的增函数,则;
指数函数为上的减函数,则.
综上所述,.
故选:C.
【答案点睛】
本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.
6、A
【答案解析】
设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.
【题目详解】
设E为BD中点,连接AE、CE,
由题可知,,所以平面,
过A作于点O,连接DO,则平面,
所以即为直线AD与平面BCD所成角的平面角,
所以,可得,
在中可得,
又,即点O与点C重合,此时有平面,
过C作与点F,
又,所以,所以平面,
从而角即为直线AC与平面ABD所成角,,
故选:A.
【答案点睛】
该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.
7、C
【答案解析】
分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.
详解:作出不等式组对应的平面区域如图所示:
则,所以平面区域的面积,
解得,此时,
由图可得当过点时,取得最大值9,故选C.
点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.
8、D
【答案解析】
画出曲线与围成的封闭区域,表示封闭区域内的点和定点连线的斜率,然后结合图形求解可得所求范围.
【题目详解】
画出曲线与围成的封闭区域,如图阴影部分所示.
表示封闭区域内的点和定点连线的斜率,
设,结合图形可得或,
由题意得点A,B的坐标分别为,
∴,
∴或,
∴的取值范围为.
故选D.
【答案点睛】
解答本题的关键有两个:一是根据数形结合的方法求解问题,即把看作两点间连线的斜率;二是要正确画出两曲线所围成的封闭区域.考查转化能力和属性结合的能力,属于基础题.
9、C
【答案解析】
根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.
【题目详解】
当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.
此时椭圆长轴长为,短轴长为6,
所以椭圆离心率,
所以.
故选:C
【答案点睛】
本题考查了橢圆的定义及其性质的简单应用,属于基础题.
10、D
【答案解析】
根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.
【题目详解】
对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.
【答案点睛】
本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.
11、D
【答案解析】
集合.为自然数集,由此能求出结果.
【题目详解】
解:集合.为自然数集,
在A中,,正确;
在B中,,正确;
在C中,,正确;
在D中,不是的子集,故D错误.
故选:D.
【答案点睛】
本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.
12、D
【答案解析】
令,可得.
在坐标系内画出函数的图象(如图所示).
当时,.由得.
设过原点的直线与函数的图象切于点,
则有,解得.
所以当直线与函数的图象切时.
又当直线经过点时,有,解得.
结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.
即函数在区间上有三个零点时,实数的取值范围是.选D.
点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.
二、