温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
许昌市
高三二诊
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )
A. B. C. D.
2.已知正项等比数列中,存在两项,使得,,则的最小值是( )
A. B. C. D.
3.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( )
A.1 B.2 C.3 D.4
4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为
A.48 B.72 C.90 D.96
5.设集合(为实数集),,,则( )
A. B. C. D.
6.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( )
A.8 B.9 C.10 D.11
7.已知函数,集合,,则( )
A. B.
C. D.
8.已知向量,,则向量在向量上的投影是( )
A. B. C. D.
9.已知平面向量,,满足:,,则的最小值为( )
A.5 B.6 C.7 D.8
10.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )
A. B. C. D.
11.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D.2
12.用数学归纳法证明,则当时,左端应在的基础上加上( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,为正实数,且,则的最小值为________________.
14.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.
15.已知向量,,,则__________.
16.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数.
(1)当时,求不等式的解集;
(2)当时,求实数的取值范围.
18.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.
(1)写出与的直角坐标方程;
(2)在什么范围内取值时,与有交点.
19.(12分)已知函数
(1)当时,证明,在恒成立;
(2)若在处取得极大值,求的取值范围.
20.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别
男
2
3
5
15
18
12
女
0
5
10
10
7
13
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元)
10
20
概率
现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.
附表及公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
21.(12分)记函数的最小值为.
(1)求的值;
(2)若正数,,满足,证明:.
22.(10分)已知直线与抛物线交于两点.
(1)当点的横坐标之和为4时,求直线的斜率;
(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.
【题目详解】
由于,函数最高点与最低点的高度差为,
所以函数的半个周期,所以,
又,,则有,可得,
所以,
将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,
所以的最小值为1,
故选:B.
【答案点睛】
该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.
2、C
【答案解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.
【题目详解】
,,或(舍).
,,.
当,时;
当,时;
当,时,,所以最小值为.
故选:C.
【答案点睛】
本题考查等比数列通项公式基本量的计算及最小值,属于基础题.
3、B
【答案解析】
设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.
【题目详解】
解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;
对于②,连结,,在中,,而,是的中点,所以,②正确;
对于③由②可知,在中,,连结,易知,而在中,,,
即,又,面,平面平面,③正确;
以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;
, ,, , , ;
, ;
异面直线与所成角为,,故.④不正确.
故选:.
【答案点睛】
本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.
4、D
【答案解析】
因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛
①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种
故答案为:96
点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.
5、A
【答案解析】
根据集合交集与补集运算,即可求得.
【题目详解】
集合,,
所以
所以
故选:A
【答案点睛】
本题考查了集合交集与补集的混合运算,属于基础题.
6、B
【答案解析】
根据题意计算,,,解不等式得到答案.
【题目详解】
∵是以1为首项,2为公差的等差数列,∴.
∵是以1为首项,2为公比的等比数列,∴.
∴
.
∵,∴,解得.则当时,的最大值是9.
故选:.
【答案点睛】
本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.
7、C
【答案解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.
【题目详解】
,,
∴.
故选C.
【答案点睛】
本题主要考查了集合的基本运算,难度容易.
8、A
【答案解析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解
【题目详解】
由于向量,
故
向量在向量上的投影是.
故选:A
【答案点睛】
本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.
9、B
【答案解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.
【题目详解】
建立平面直角坐标系如下图所示,设,,且,由于,所以.
.所以
,即.
.当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.
故选:B
【答案点睛】
本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.
10、D
【答案解析】
设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.
【题目详解】
设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.
故选:D.
【答案点睛】
本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.
11、B
【答案解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.
【题目详解】
根据圆柱的三视图以及其本身的特征,
将圆柱的侧面展开图平铺,
可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,
所以所求的最短路径的长度为,故选B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.
12、C
【答案解析】
首先分析题目求用数学归纳法证明1+1+3+…+n1=时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.
【题目详解】
当n=k时,等式左端=1+1+…+k1,
当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.
故选:C.
【答案点睛】
本题主要考查数学归纳法,属于中档题./
二、填空题:本题共4小题