温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
浙江省
义乌市
群星
外国语学校
高三一诊
考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.tan570°=( )
A. B.- C. D.
2.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入( )
A., B. C., D.,
3.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )
A.截止到2015年中国累计装机容量达到峰值
B.10年来全球新增装机容量连年攀升
C.10年来中国新增装机容量平均超过
D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过
4.已知为一条直线,为两个不同的平面,则下列说法正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
5.若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为( )
A. B. C. D.
7.已知函数()的部分图象如图所示.则( )
A. B.
C. D.
8.函数的单调递增区间是( )
A. B. C. D.
9.下列说法正确的是( )
A.“若,则”的否命题是“若,则”
B.“若,则”的逆命题为真命题
C.,使成立
D.“若,则”是真命题
10.已知函数f(x)=,若关于x的方程f(x)=kx-恰有4个不相等的实数根,则实数k的取值范围是( )
A. B.
C. D.
11.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为( )
① ② ③ ④ ⑤
A.1个 B.2个 C.3个 D.4个
12.已知函数,,若总有恒成立.记的最小值为,则的最大值为( )
A.1 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列的前项和为,,则满足的正整数的值为______.
14.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
15.已知数列为等比数列,,则_____.
16.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.
18.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.
求椭圆的标准方程;
直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.
19.(12分)已知是圆:的直径,动圆过,两点,且与直线相切.
(1)若直线的方程为,求的方程;
(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.
20.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
21.(12分)已知函数,.
(1)当时,
①求函数在点处的切线方程;
②比较与的大小;
(2)当时,若对时,,且有唯一零点,证明:.
22.(10分)已知,,分别为内角,,的对边,且.
(1)证明:;
(2)若的面积,,求角.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
直接利用诱导公式化简求解即可.
【题目详解】
tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.
故选:A.
【答案点睛】
本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.
2、A
【答案解析】
依题意问题是,然后按直到型验证即可.
【题目详解】
根据题意为了计算7个数的方差,即输出的,
观察程序框图可知,应填入,,
故选:A.
【答案点睛】
本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.
3、D
【答案解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.
【题目详解】
年份
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
累计装机容量
158.1
197.2
237.8
282.9
318.7
370.5
434.3
489.2
542.7
594.1
新增装机容量
39.1
40.6
45.1
35.8
51.8
63.8
54.9
53.5
51.4
中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.
故选:D
【答案点睛】
本题考查条形图,考查基本分析求解能力,属基础题.
4、D
【答案解析】
A. 若,则或,故A错误;
B. 若,则或故B错误;
C. 若,则或,或与相交;
D. 若,则,正确.
故选D.
5、B
【答案解析】
由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解
【题目详解】
由题意得,
因为,,
所以在复平面内对应的点位于第二象限.
故选:B
【答案点睛】
本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.
6、D
【答案解析】
根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.
【题目详解】
如图,
因为为等腰三角形,,
所以,,
,
又,
,
解得,
所以双曲线的渐近线方程为,
故选:D
【答案点睛】
本题主要考查了双曲线的简单几何性质,属于中档题.
7、C
【答案解析】
由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.
【题目详解】
依题意,,即,
解得;因为
所以,当时,.
故选:C.
【答案点睛】
本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.
8、D
【答案解析】
利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.
【题目详解】
因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.
故选D.
【答案点睛】
本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.
9、D
【答案解析】
选项A,否命题为“若,则”,故A不正确.
选项B,逆命题为“若,则”,为假命题,故B不正确.
选项C,由题意知对,都有,故C不正确.
选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.
选D.
10、D
【答案解析】
由已知可将问题转化为:y=f(x)的图象和直线y=kx-有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-的下方,即可求得:k>;再求得直线y=kx-和y=ln x相切时,k=;结合图象即可得解.
【题目详解】
若关于x的方程f(x)=kx-恰有4个不相等的实数根,
则y=f(x)的图象和直线y=kx-有4个交点.作出函数y=f(x)的图象,如图,
故点(1,0)在直线y=kx-的下方.
∴k×1->0,解得k>.
当直线y=kx-和y=ln x相切时,设切点横坐标为m,
则k==,∴m=.
此时,k==,f(x)的图象和直线y=kx-有3个交点,不满足条件,
故所求k的取值范围是,
故选D..
【答案点睛】
本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题.
11、B
【答案解析】
满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.
【题目详解】
满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);
③不满足(2);④⑤均满足(1)(2).
故选:B.
【答案点睛】
本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.
12、C
【答案解析】
根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,
即.根据题意化简可得,求得,再换元求导分析最大值即可.
【题目详解】
由题, 总有即恒成立.
设,则的最大值小于等于0.
又,
若则,在上单调递增, 无最大值.
若,则当时,,在上单调递减,
当时,,在上单调递增.
故在处取得最大值.
故,化简得.
故,令,可令,
故,当时, ,在递减;
当时, ,在递增.
故在处取得极大值,为.
故的最大值为.
故选:C
【答案点睛】
本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.
二、填空题:本题共4小题,每小题5分,共20分。
13、6
【答案解析】
已知,利用,求出通项,然后即可求解
【题目详解】
∵,∴当时,,∴;当时,,∴,故数列是首项为-2,公比为2的等比数列,∴.又,∴,∴,∴.
【答案点睛】
本题考查通项求解问题,属于基础题
14、
【答案解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.
【题目详解】
根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.