温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
汤阴县
第一
中学
高三二诊
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为( )
A. B. C. D.
2.若a>b>0,0<c<1,则
A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb
3.若复数满足,则的虚部为( )
A.5 B. C. D.-5
4.定义在上的函数满足,则()
A.-1 B.0 C.1 D.2
5.函数(且)的图象可能为( )
A. B. C. D.
6.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( )
A.国防大学,研究生 B.国防大学,博士
C.军事科学院,学士 D.国防科技大学,研究生
7.已知等边△ABC内接于圆:x2+ y2=1,且P是圆τ上一点,则的最大值是( )
A. B.1 C. D.2
8.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( )
A. B.
C. D.
9.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )
A. B.
C. D.
10.函数的部分图象大致为( )
A. B.
C. D.
11.设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
12.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足的大学生使用主要玩游戏;
③可以估计使用主要找人聊天的大学生超过总数的.
其中正确的个数为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若函数()的图象与直线相切,则______.
14.已知随机变量服从正态分布,,则__________.
15.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.
16.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数 .
(1)若在 处导数相等,证明: ;
(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.
18.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.
(1)证明:;
(2)求二面角的余弦值.
19.(12分)已知,求的最小值.
20.(12分)如图,在四边形中,,,.
(1)求的长;
(2)若的面积为6,求的值.
21.(12分)如图所示,直角梯形中,,,,四边形为矩形,.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.
22.(10分)在四边形中,,;如图,将沿边折起,连结,使,求证:
(1)平面平面;
(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,
可知为的三等分点,且,
点在直线上,并且,则,,
设,则,
解得,即,
代入双曲线的方程可得,解得,故选D.
点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).
2、B
【答案解析】
试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.
【考点】指数函数与对数函数的性质
【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.
3、C
【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.
【题目详解】
由(1+i)z=|3+4i|,
得z,
∴z的虚部为.
故选C.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.
4、C
【答案解析】
推导出,由此能求出的值.
【题目详解】
∵定义在上的函数满足,
∴,故选C.
【答案点睛】
本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.
5、D
【答案解析】
因为,故函数是奇函数,所以排除A,B;取,则,故选D.
考点:1.函数的基本性质;2.函数的图象.
6、C
【答案解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.
【题目详解】
由题意①甲不是军事科学院的,③乙不是军事科学院的;
则丙来自军事科学院;
由②来自军事科学院的不是博士,则丙不是博士;
由⑤国防科技大学的是研究生,可知丙不是研究生,
故丙为学士.
综上可知,丙来自军事科学院,学位是学士.
故选:C.
【答案点睛】
本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.
7、D
【答案解析】
如图所示建立直角坐标系,设,则,计算得到答案.
【题目详解】
如图所示建立直角坐标系,则,,,设,
则
.
当,即时等号成立.
故选:.
【答案点睛】
本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.
8、A
【答案解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.
【题目详解】
根据题意,的图象与直线的相邻交点间的距离为,
所以 的周期为, 则,
所以,
由正弦函数和正切函数图象可知正确.
故选:A.
【答案点睛】
本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.
9、A
【答案解析】
点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.
【题目详解】
不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,
因为,,
所以,
当且仅当,即当时,等号成立,
此时最大,此时的外接圆面积取最小值,
点的坐标为,代入可得,.
所以双曲线的方程为.
故选:
【答案点睛】
本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.
10、B
【答案解析】
图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
【题目详解】
,故奇函数,四个图像均符合。
当时,,,排除C、D
当时,,,排除A。
故选B。
【答案点睛】
图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。
11、B
【答案解析】
先解不等式化简两个条件,利用集合法判断充分必要条件即可
【题目详解】
解不等式可得,
解绝对值不等式可得,
由于为的子集,
据此可知“”是“”的必要不充分条件.
故选:B
【答案点睛】
本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.
12、C
【答案解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.
【题目详解】
使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;
使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;
使用主要找人聊天的大学生人数为,因为,所以③正确.
故选:C.
【答案点睛】
本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、2
【答案解析】
设切点由已知可得,即可解得所求.
【题目详解】
设,因为,所以,即,又,.所以,即,.
故答案为:.
【答案点睛】
本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.
14、0.22.
【答案解析】
正态曲线关于x=μ对称,根据对称性以及概率和为1求解即可。
【题目详解】
【答案点睛】
本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题.
15、16 4
【答案解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.
【题目详解】
令x=0,得a5=(0+1)3(0+2)2=4,
而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;
则a4=+2+=5+8+3=16.
故答案为:16,4.
【答案点睛】
本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.
16、
【答案解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.
【题目详解】
由题可知,,设,由切线的性质可知,则
显然,则或(舍去)
因为
令,则,由双勾函数单调性可知其在区间上单调递增,所以
故答案为:
【答案点睛】
本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.
三、解答题:共70分。解答应写