分享
2023届枣庄市第三中学高三第一次模拟考试数学试卷(含解析).doc
下载文档

ID:19853

大小:2.19MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 枣庄市 第三中学 第一次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法: ①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数; ②可以估计不足的大学生使用主要玩游戏; ③可以估计使用主要找人聊天的大学生超过总数的. 其中正确的个数为( ) A. B. C. D. 2.已知集合,,则 A. B. C. D. 3.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ). A.与2016年相比,2019年不上线的人数有所增加 B.与2016年相比,2019年一本达线人数减少 C.与2016年相比,2019年二本达线人数增加了0.3倍 D.2016年与2019年艺体达线人数相同 4.复数满足,则复数在复平面内所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.已知函数,,当时,不等式恒成立,则实数a的取值范围为( ) A. B. C. D. 6.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( ) A. B. C. D. 8.已知数列满足:)若正整数使得成立,则( ) A.16 B.17 C.18 D.19 9.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( ) ①与点距离为的点形成一条曲线,则该曲线的长度是; ②若面,则与面所成角的正切值取值范围是; ③若,则在该四棱柱六个面上的正投影长度之和的最大值为. A. B. C. D. 10.函数在区间上的大致图象如图所示,则可能是( ) A. B. C. D. 11.已知集合,则集合的非空子集个数是( ) A.2 B.3 C.7 D.8 12.己知全集为实数集R,集合A={x|x2 +2x-8>0},B={x|log2x<1},则等于( ) A.[4,2] B.[4,2) C.(4,2) D.(0,2) 二、填空题:本题共4小题,每小题5分,共20分。 13.若复数z满足,其中i是虚数单位,则z的模是______. 14.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________. 15.将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值为______. 16.已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)当时,求曲线在点处的切线方程; (2)若在上恒成立,求的取值范围. 18.(12分)如图,在中,角的对边分别为,且满足,线段的中点为. (Ⅰ)求角的大小; (Ⅱ)已知,求的大小. 19.(12分)如图,三棱锥中, (1)证明:面面; (2)求二面角的余弦值. 20.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点. (1)求抛物线C的方程; (2)若F在线段上,P是的中点,证明:. 21.(12分)已知,设函数 (I)若,求的单调区间: (II)当时,的最小值为0,求的最大值.注:…为自然对数的底数. 22.(10分)设数列是等比数列,,已知, (1)求数列的首项和公比;(2)求数列的通项公式. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论. 【题目详解】 使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确; 使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误; 使用主要找人聊天的大学生人数为,因为,所以③正确. 故选:C. 【答案点睛】 本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题. 2、D 【答案解析】 因为,,所以,,故选D. 3、A 【答案解析】 设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D. 【题目详解】 设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为, 2019年不上线人数为,故A正确; 2016年高考一本人数,2019年高考一本人数,故B错误; 2019年二本达线人数,2016年二本达线人数,增加了 倍,故C错误; 2016年艺体达线人数,2019年艺体达线人数,故D错误. 故选:A. 【答案点睛】 本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目. 4、B 【答案解析】 设,则,可得,即可得到,进而找到对应的点所在象限. 【题目详解】 设,则, ,, 所以复数在复平面内所对应的点为,在第二象限. 故选:B 【答案点睛】 本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力. 5、D 【答案解析】 由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围. 【题目详解】 ,即函数在时是单调增函数. 则恒成立. . 令,则 时,单调递减,时单调递增. 故选:D. 【答案点睛】 本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难. 6、B 【答案解析】 分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限. 【题目详解】 因为时,所以,,所以复数在复平面内对应的点位于第二象限. 故选:B. 【答案点睛】 本题考查复数的几何意义,考查学生的计算求解能力,属于基础题. 7、C 【答案解析】 求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解. 【题目详解】 如下图所示: 设点关于直线的对称点为点, 则,整理得,解得,即点, 所以,圆关于直线的对称圆的方程为, 设点,则, 当时,取最小值,因此,. 故选:C. 【答案点睛】 本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题. 8、B 【答案解析】 计算,故,解得答案. 【题目详解】 当时,,即,且. 故, ,故. 故选:. 【答案点睛】 本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用. 9、C 【答案解析】 ①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和. 【题目详解】 如图: ①错误, 因为 ,与点距离为的点形成以为圆心,半径为的圆弧,长度为; ②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是; ③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号. 故选:. 【答案点睛】 本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题. 10、B 【答案解析】 根据特殊值及函数的单调性判断即可; 【题目详解】 解:当时,,无意义,故排除A; 又,则,故排除D; 对于C,当时,,所以不单调,故排除C; 故选:B 【答案点睛】 本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题. 11、C 【答案解析】 先确定集合中元素,可得非空子集个数. 【题目详解】 由题意,共3个元素,其子集个数为,非空子集有7个. 故选:C. 【答案点睛】 本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个. 12、D 【答案解析】 求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案. 【题目详解】 解:由x2 +2x-8>0,得x<-4或x>2, ∴A={x|x2 +2x-8>0}={x| x<-4或x>2}, 由log2x<1,x>0,得0<x<2, ∴B={x|log2x<1}={ x |0<x<2}, 则, ∴. 故选:D. 【答案点睛】 本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 先求得复数,再由复数模的计算公式即得. 【题目详解】 , ,则. 故答案为: 【答案点睛】 本题考查复数的四则运算和求复数的模,是基础题. 14、或 【答案解析】 用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解. 【题目详解】 联立解得. 所以的面积,所以. 而由双曲线的焦距为知,,所以. 联立解得或 故双曲线的离心率为或. 故答案为:或. 【答案点睛】 本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题. 15、 【答案解析】 由三角函数图象相位变换后表达函数解析式,再利用三角恒等变换与辅助角公式整理的表达式,进而由三角函数值域求得最大值. 【题目详解】 将函数的图象向右平移个单位长度后得到函数的图象, 则 所以,当函数最大,最大值为 故答案为: 【答案点睛】 本题考查表示三角函数图象平移后图象的解析式,还考查了利用三角恒等变换化简函数式并求最值,属于简单题. 16、4 【答案解析】 由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值. 【题目详解】 ,可得,由,则或,即或,由题意得,所以,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开