分享
2023届湖南省宁乡县第一高级中学高三冲刺模拟数学试卷(含解析).doc
下载文档

ID:19849

大小:1.80MB

页数:17页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 湖南省 宁乡县 第一 高级中学 冲刺 模拟 数学试卷 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数的部分图象大致是( ) A. B. C. D. 2.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( ) A. B. C. D. 3.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( ) A.2 B. C.6 D.8 4.抛物线的准线方程是,则实数( ) A. B. C. D. 5.已知为实数集,,,则( ) A. B. C. D. 6.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( ) A. B. C. D. 7.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为(    ) A. B. C. D. 8.设点,,不共线,则“”是“”( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 9.函数的大致图象是 A. B. C. D. 10.已知复数,则( ) A. B. C. D. 11.用数学归纳法证明,则当时,左端应在的基础上加上( ) A. B. C. D. 12.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知,,求____________. 14.从4名男生和3名女生中选出4名去参加一项活动,要求男生中的甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为______.(用数字作答) 15.已知函数,则曲线在点处的切线方程是_______. 16.(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为坐标原点,则面积的取值范围是____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,矩形和梯形所在的平面互相垂直,,,. (1)若为的中点,求证:平面; (2)若,求四棱锥的体积. 18.(12分)己知,函数. (1)若,解不等式; (2)若函数,且存在使得成立,求实数的取值范围. 19.(12分)已知函数,. (Ⅰ)若,求的取值范围; (Ⅱ)若,对,,都有不等式恒成立,求的取值范围. 20.(12分)已知椭圆的短轴的两个端点分别为、,焦距为. (1)求椭圆的方程; (2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上. 21.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角. (1)证明:; (2)求与面所成角的正弦值. 22.(10分)已知向量, . (1)求的最小正周期; (2)若的内角的对边分别为,且,求的面积. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 判断函数的性质,和特殊值的正负,以及值域,逐一排除选项. 【题目详解】 ,函数是奇函数,排除, 时,,时,,排除, 当时,, 时,,排除, 符合条件,故选C. 【答案点睛】 本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项. 2、A 【答案解析】 建立平面直角坐标系,求出直线, 设出点,通过,找出与的关系. 通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围. 【题目详解】 以D为原点,BC所在直线为轴,AD所在直线为轴建系, 设,则直线 , 设点, 所以 由得 ,即 , 所以, 由及,解得,由二次函数的图像知,,所以的取值范围是.故选A. 【答案点睛】 本题主要考查解析法在向量中的应用,以及转化与化归思想的运用. 3、A 【答案解析】 先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【题目详解】 由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为. 故选A 【答案点睛】 本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 4、C 【答案解析】 根据准线的方程写出抛物线的标准方程,再对照系数求解即可. 【题目详解】 因为准线方程为,所以抛物线方程为,所以,即. 故选:C 【答案点睛】 本题考查抛物线与准线的方程.属于基础题. 5、C 【答案解析】 求出集合,,,由此能求出. 【题目详解】 为实数集,,, 或, . 故选:. 【答案点睛】 本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题. 6、A 【答案解析】 由题可得出的坐标为,再利用点对称的性质,即可求出和. 【题目详解】 根据题意,,所以点的坐标为, 又 , 所以. 故选:A. 【答案点睛】 本题考查指数函数过定点问题和函数对称性的应用,属于基础题. 7、B 【答案解析】 建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可. 【题目详解】 建立如图所示的平面直角坐标系,则D(0,0). 不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1), ∴(-2,2)=λ(-2,1)+μ(1,2), 解得则. 故选:B 【答案点睛】 本题主要考查了由平面向量线性运算的结果求参数,属于中档题. 8、C 【答案解析】 利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可. 【题目详解】 由于点,,不共线,则“”; 故“”是“”的充分必要条件. 故选:C. 【答案点睛】 本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题. 9、A 【答案解析】 利用函数的对称性及函数值的符号即可作出判断. 【题目详解】 由题意可知函数为奇函数,可排除B选项; 当时,,可排除D选项; 当时,,当时,, 即,可排除C选项, 故选:A 【答案点睛】 本题考查了函数图象的判断,函数对称性的应用,属于中档题. 10、B 【答案解析】 利用复数除法、加法运算,化简求得,再求得 【题目详解】 ,故. 故选:B 【答案点睛】 本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题. 11、C 【答案解析】 首先分析题目求用数学归纳法证明1+1+3+…+n1=时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案. 【题目详解】 当n=k时,等式左端=1+1+…+k1, 当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1. 故选:C. 【答案点睛】 本题主要考查数学归纳法,属于中档题./ 12、C 【答案解析】 分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解. 【题目详解】 由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是; 仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率. 故选:C 【答案点睛】 本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 求出向量的坐标,然后利用向量数量积的坐标运算可计算出结果. 【题目详解】 ,,, 因此,. 故答案为:. 【答案点睛】 本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题. 14、1 【答案解析】 由排列组合及分类讨论思想分别讨论:①设甲参加,乙不参加,②设乙参加,甲不参加,③设甲,乙都不参加,可得不同的选法种数为9+9+5=1,得解. 【题目详解】 ①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9, ②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9, ③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为5, 综合①②③得:不同的选法种数为9+9+5=1, 故答案为:1. 【答案点睛】 本题考查了排列组合及分类讨论思想,准确分类及计算是关键,属中档题. 15、 【答案解析】 求导,x=0代入求k,点斜式求切线方程即可 【题目详解】 则又 故切线方程为y=x+1 故答案为y=x+1 【答案点睛】 本题考查切线方程,求导法则及运算,考查直线方程,考查计算能力,是基础题 16、 【答案解析】 由题意,,则,得.由题意可设的方程为,,联立方程组,消去得,恒成立,,,则,点到直线的距离为,则,又,则,当且仅当即时取等号.故面积的取值范围是. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、 (1)见解析(2) 【答案解析】 (1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF; (2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积. 【题目详解】 (1)证明:设与交于点,连接, 在矩形中,点为中点, ∵为的中点,∴, 又∵平面,平面, ∴平面. (2)取中点为,连接,, 平面平面, 平面平面, 平面,, ∴平面,同理平面, ∴的长即为四棱锥的高, 在梯形中,, ∴四边形是平行四边形,, ∴平面, 又∵平面,∴, 又,, ∴平面,. 注意到, ∴,, ∴. 【答案点睛】 求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开