温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖北省
天门市
三校高三
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数满足,则复数等于()
A. B. C.2 D.-2
2.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )
A. B. C. D.
3.i是虚数单位,若,则乘积的值是( )
A.-15 B.-3 C.3 D.15
4.若,则, , , 的大小关系为( )
A. B.
C. D.
5.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )
A.CPI一篮子商品中所占权重最大的是居住
B.CPI一篮子商品中吃穿住所占权重超过50%
C.猪肉在CPI一篮子商品中所占权重约为2.5%
D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%
6.函数的图象在点处的切线为,则在轴上的截距为( )
A. B. C. D.
7.学业水平测试成绩按照考生原始成绩从高到低分为、、、、五个等级.某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班( )
A.物理化学等级都是的学生至多有人
B.物理化学等级都是的学生至少有人
C.这两科只有一科等级为且最高等级为的学生至多有人
D.这两科只有一科等级为且最高等级为的学生至少有人
8.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为( )
A. B. C. D.
9.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )
A.4 B. C.2 D.
10.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为( )
A. B.40 C.16 D.
11.已知,则的值构成的集合是( )
A. B. C. D.
12.已知数列满足:.若正整数使得成立,则( )
A.16 B.17 C.18 D.19
二、填空题:本题共4小题,每小题5分,共20分。
13.己知函数,若曲线在处的切线与直线平行,则__________.
14.若,则________.
15.函数的图象向右平移个单位后,与函数的图象重合,则_____.
16.若满足约束条件,则的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知多面体中,、均垂直于平面,,,,是的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
18.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线和圆的普通方程;
(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.
19.(12分)已知数列满足,,其前n项和为.
(1)通过计算,,,猜想并证明数列的通项公式;
(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.
20.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元)
2
3
6
10
13
15
18
21
销量(万盒)
1
1
2
2.5
3.5
3.5
4.5
6
(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);
(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.
附:(1)相关系数
(2),,,.
21.(12分)已知函数.
(1)设,若存在两个极值点,,且,求证:;
(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).
22.(10分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E, F分别是棱AB, PC的中点.求证:
(1) EF //平面PAD;
(2)平面PCE⊥平面PCD.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
通过复数的模以及复数的代数形式混合运算,化简求解即可.
【题目详解】
复数满足,
∴,
故选B.
【答案点睛】
本题主要考查复数的基本运算,复数模长的概念,属于基础题.
2、B
【答案解析】
先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.
【题目详解】
如图所示:
确定一个平面,
因为平面平面,
所以,同理,
所以四边形是平行四边形.
即正方体被平面截的截面.
因为,
所以,
即
所以
由余弦定理得:
所以
所以四边形
故选:B
【答案点睛】
本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.
3、B
【答案解析】
,∴,选B.
4、D
【答案解析】
因为,所以,
因为,,所以,.
综上;故选D.
5、D
【答案解析】
A.从第一个图观察居住占23%,与其他比较即可. B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.
【题目详解】
A. CPI一篮子商品中居住占23%,所占权重最大的,故正确.
B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.
C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.
D. 猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.
故选:D
【答案点睛】
本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.
6、A
【答案解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.
【题目详解】
,故,
所以曲线在处的切线方程为:.
令,则,故切线的纵截距为.
故选:A.
【答案点睛】
本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.
7、D
【答案解析】
根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.
【题目详解】
根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),
表格变为:
物理
化学
对于A选项,物理化学等级都是的学生至多有人,A选项错误;
对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;
对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,
因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),
C选项错误;
对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.
故选:D.
【答案点睛】
本题考查合情推理,考查推理能力,属于中等题.
8、A
【答案解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.
【题目详解】
解:设点到平面的距离为,因为是中点,
所以到平面的距离为,
三棱锥的体积,解得,
作平面,垂足为的外心,所以,且,
所以在中,,此为球的半径,
.
故选:A.
【答案点睛】
本题考查球的表面积,考查点到平面的距离,属于中档题.
9、A
【答案解析】
由,两边平方后展开整理,即可求得,则的长可求.
【题目详解】
解:,
,
,,
,,
.
,
,
故选:.
【答案点睛】
本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
10、D
【答案解析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.
【题目详解】
如图所示:过分别作于,于.
,则,
根据得到:,即,
根据得到:,即,
解得,,故.
故选:.
【答案点睛】
本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.
11、C
【答案解析】
对分奇数、偶数进行讨论,利用诱导公式化简可得.
【题目详解】
为偶数时,;为奇数时,,则的值构成的集合为.
【答案点睛】
本题考查三角式的化简,诱导公式,分类讨论,属于基本题.
12、B
【答案解析】
由题意可得,,时,,将换为,两式相除,,,
累加法求得即有,结合条件,即可得到所求值.
【题目详解】
解:,
即,,
时,,
,
两式相除可得,
则,,
由,
,
,
,,
可得
,
且,
正整数时,要使得成立,
则,
则,
故选:.
【答案点睛】
本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先求导,再根据导数的几何意义,有求解.
【题目详解】
因为函数,
所以,
所以,
解得.
故答案为:
【答案点睛】
本题考查导数的几何意义,还考查运算求解能力以及数形结合思想,属于基础题.
14、13
【答案解析】
由导函数的应用得:设,,
所以,,又,所以,即,
由二项式定理:令得:,再由,求出,从而得到的值;
【题目详解】
解:设,,
所以,,
又,所以,
即,
取得:,
又,
所以,
故,
故答案为:13
【答案点睛】
本题考查了导函数的应用、二项式定理,属于中档题
15、
【答案解析】
根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.
【题目详解】
由函数图象的平移变换公式可得,
函数的图象向右平移个单位后,
得到的函数解析式为,
因为函数,
所以函数与函数的图象重合,
所以,即,
因