温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏省
常州市
中学
冲刺
模拟
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.正项等差数列的前和为,已知,则=( )
A.35 B.36 C.45 D.54
2.函数的大致图象为
A. B.
C. D.
3.已知向量,,若,则与夹角的余弦值为( )
A. B. C. D.
4.等比数列的前项和为,若,,,,则( )
A. B. C. D.
5.已知函数,.若存在,使得成立,则的最大值为( )
A. B.
C. D.
6.己知,,,则( )
A. B. C. D.
7.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是
A. B.
C. D.
8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)
A.1624 B.1024 C.1198 D.1560
9.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是( )
A. B. C. D.
10.已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )
A.的值域是 B.是奇函数
C.是周期函数 D.是增函数
11.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是( )
A. B.
C. D.
12.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量与的夹角为,||=||=1,且⊥(λ),则实数_____.
14.在长方体中,,,,为的中点,则点到平面的距离是______.
15.在某批次的某种灯泡中,随机抽取200个样品.并对其寿命进行追踪调查,将结果列成频率分布表如下:
寿命(天)
频数
频率
40
60
0.3
0.4
20
0.1
合计
200
1
某人从灯泡样品中随机地购买了个,如果这个灯泡的寿命情况恰好与按四个组分层抽样所得的结果相同,则的最小值为______.
16.已知向量,,满足,,,则的取值范围为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.
(1)求证:平面平面;
(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.
18.(12分)已知抛物线上一点到焦点的距离为2,
(1)求的值与抛物线的方程;
(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.
19.(12分)已知函数,其中为自然对数的底数,.
(1)若曲线在点处的切线与直线平行,求的值;
(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.
20.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:
1.08
1.12
1.19
1.28
1.36
1.48
1.59
1.68
1.80
1.87
2.25
2.37
2.40
2.55
2.64
2.75
2.92
3.03
3.14
3.26
(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:,,,,.
②参考公式:相关系数,,.
21.(12分)已知函数.
(1)讨论的单调性;
(2)若函数在上存在两个极值点,,且,证明.
22.(10分)已知数列满足,.
(1)求数列的通项公式;
(2)若,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.
【题目详解】
正项等差数列的前项和,
,
,
解得或(舍),
,故选C.
【答案点睛】
本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.
2、A
【答案解析】
因为,所以函数是偶函数,排除B、D,
又,排除C,故选A.
3、B
【答案解析】
直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.
【题目详解】
依题意,, 而, 即, 解得, 则.
故选:B.
【答案点睛】
本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.
4、D
【答案解析】
试题分析:由于在等比数列中,由可得:,
又因为,
所以有:是方程的二实根,又,,所以,
故解得:,从而公比;
那么,
故选D.
考点:等比数列.
5、C
【答案解析】
由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.
【题目详解】
,,
由于,则,同理可知,,
函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,
,则,,则,
构造函数,其中,则.
当时,,此时函数单调递增;当时,,此时函数单调递减.
所以,.
故选:C.
【答案点睛】
本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.
6、B
【答案解析】
先将三个数通过指数,对数运算变形,再判断.
【题目详解】
因为,,
所以,
故选:B.
【答案点睛】
本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.
7、B
【答案解析】
此题画出正方体模型即可快速判断m的取值.
【题目详解】
如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.
所以本题答案为B.
【答案点睛】
本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.
8、B
【答案解析】
根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.
【题目详解】
依题意
:1,4,8,14,23,36,54,……
两两作差得
:3,4,6,9,13,18,……
两两作差得
:1,2,3,4,5,……
设该数列为,令,设的前项和为,又令,设的前项和为.
易,,进而得,所以,则,所以,所以.
故选:B
【答案点睛】
本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.
9、B
【答案解析】
利用抛物线的定义可得,,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.
【题目详解】
设抛物线的焦点为F,设点,
由抛物线的定义可知,
线段AB中点的横坐标为3,又,,可得,
所以抛物线方程为.
故选:B.
【答案点睛】
本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.
10、C
【答案解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.
【题目详解】
由表示不超过的最大正整数,其函数图象为
选项A,函数,故错误;
选项B,函数为非奇非偶函数,故错误;
选项C,函数是以1为周期的周期函数,故正确;
选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.
故选:C
【答案点睛】
本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.
11、C
【答案解析】
由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.
【题目详解】
设函数,,
因为,
所以,
或,
因为 时,,
或时,,,其图象如下:
当时,至多一个整数根;
当时,在内的解集中仅有三个整数,只需,
,
所以.
故选:C.
【答案点睛】
本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.
12、D
【答案解析】
设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;
【题目详解】
解:设,,由,得,
∵,解得或,∴,.
又由,得,∴或,∴,
∵,
∴,
又∵,
∴代入解得.
故选:D
【答案点睛】
本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
根据条件即可得出,由即可得出,进行数量积的运算即可求出λ.
【题目详解】
∵向量与的夹角为,||=||=1,且;
∴;
∴λ=1.
故答案为:1.
【答案点睛】
考查向量数量积的运算及计算公式,以及向量垂直的充要条件.
14、
【答案解析】
利用等体积法求解点到平面的距离
【题目详解】
由题在长方体中,,
,
所以,所以,
设点到平面的距离为
,解得
故答案为:
【答案点睛】
此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.
15、10
【答案解析】
先求出a,b,根据分层抽样的比例引入正整数k表示n,从而得出的最小值.
【题目详解】
由题意得,a=0.2,b=80,由表可知,灯泡样品第一组有40个,第二组有60个,第三组有80个,第四组有20个,所以四个组的比例为2:3:4:1,所以按分层抽样法,购买的灯泡数为n=2k+3k+4k+k =10k(),所以的最小值为10.
【答案点睛】
本题考查分层抽样基本原理的应用,涉及抽样比、总体数量、每层样本数量的计算,属于基础题.
16、
【答案解析】
设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.
【题目详解】
设,,,,
如图所示:
因为,,,
所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,
则即的距离,
由图可知