温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
朔州市
怀仁
重点中学
下学
第一次
联考
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在中,,,,若,则实数( )
A. B. C. D.
2.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )
A. B. C. D.
3.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
4.已知三点A(1,0),B(0, ),C(2,),则△ABC外接圆的圆心到原点的距离为( )
A. B.
C. D.
5.已知复数,,则( )
A. B. C. D.
6.已知是定义在上的奇函数,且当时,.若,则的解集是( )
A. B.
C. D.
7.设复数满足,在复平面内对应的点为,则不可能为( )
A. B. C. D.
8.已知数列的前项和为,且,,则( )
A. B. C. D.
9.函数的图象如图所示,则它的解析式可能是( )
A. B.
C. D.
10.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )
A. B. C. D.
11.复数( ).
A. B. C. D.
12.设a,b,c为正数,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不修要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.
14.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.
15.若,则________,________.
16.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)讨论的零点个数;
(2)证明:当时,.
18.(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.
(1)求证:;
(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.
19.(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:
(1)分别求出所抽取的人中得分落在组和内的人数;
(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.
20.(12分)选修4-5:不等式选讲
已知函数
(Ⅰ)解不等式;
(Ⅱ)对及,不等式恒成立,求实数的取值范围.
21.(12分)已知x∈R,设,,记函数.
(1)求函数取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.
22.(10分)已知矩阵,二阶矩阵满足.
(1)求矩阵;
(2)求矩阵的特征值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
将、用、表示,再代入中计算即可.
【题目详解】
由,知为的重心,
所以,又,
所以,
,所以,.
故选:D
【答案点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.
2、A
【答案解析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.
【题目详解】
由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.
故选:A.
【答案点睛】
本题考查古典概型概率,解题关键是求出基本事件的个数.
3、C
【答案解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.
考点:频率分布直方图及其应用.
4、B
【答案解析】
选B.
考点:圆心坐标
5、B
【答案解析】
分析:利用的恒等式,将分子、分母同时乘以 ,化简整理得
详解: ,故选B
点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.
6、B
【答案解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.
【题目详解】
为定义在上的奇函数,.
当时,,,
为奇函数,,
由得:或;
综上所述:若,则的解集为.
故选:.
【答案点睛】
本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.
7、D
【答案解析】
依题意,设,由,得,再一一验证.
【题目详解】
设,
因为,
所以,
经验证不满足,
故选:D.
【答案点睛】
本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.
8、C
【答案解析】
根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.
【题目详解】
由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.
故选:C
【答案点睛】
本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.
9、B
【答案解析】
根据定义域排除,求出的值,可以排除,考虑排除.
【题目详解】
根据函数图象得定义域为,所以不合题意;
选项,计算,不符合函数图象;
对于选项, 与函数图象不一致;
选项符合函数图象特征.
故选:B
【答案点睛】
此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.
10、A
【答案解析】
由已知,设.可得.于是可得,进而得出结论.
【题目详解】
解:依题意,设.
则.
,.
设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.
则,
.
故选:A.
【答案点睛】
本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.
11、A
【答案解析】
试题分析:,故选A.
【考点】复数运算
【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.
12、B
【答案解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
解:,,为正数,
当,,时,满足,但不成立,即充分性不成立,
若,则,即,
即,即,成立,即必要性成立,
则“”是“”的必要不充分条件,
故选:.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
化简得到,,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.
【题目详解】
,即,,故.
根据余弦定理:,即.
当时等号成立,故.
故答案为:.
【答案点睛】
本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.
14、
【答案解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.
【题目详解】
满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.
故答案为:
【答案点睛】
本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.
15、
【答案解析】
根据诱导公式和二倍角公式计算得到答案.
【题目详解】
,故.
故答案为:;.
【答案点睛】
本题考查了诱导公式和二倍角公式,属于简单题.
16、
【答案解析】
连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.
【题目详解】
如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,
当最小时,最小,设点,则,
所以当时,,则,
当点的横坐标时,,此时,
因为随着的增大而增大,所以的取值范围为.
故答案为:.
【答案点睛】
本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析(2)见解析
【答案解析】
(1)求出,分别以当,,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.
【题目详解】
解析:(1),,
当时,,单调递减,,,此时有1个零点;
当时,无零点;
当时,由得,由得,∴在单调递减,在单调递增,∴在处取得最小值,
若,则,此时没有零点;
若,则,此时有1个零点;
若,则,,求导易得,此时在,上各有1个零点.
综上可得时,没有零点,或时,有1个零点,时,有2个零点.
(2)令,则,当时,;当时,,∴.
令,则,
当时,,当时,,∴,
∴,,∴,即.
【答案点睛】
本题考查了导数判断函数零点问题,考查了运用导数证明不等式问题,考查了分类的数学思想.本题的难点在于第二问不等式的证明中,合理设出函数,通过比较最值证明.
18、(1)证明见解析(2)
【答案解析】
(1)先证明EF平面,即可求证;
(2)根据二面角的余弦值,可得平面,以为坐标原点,建立空间直角坐标系,利用向量计算线面角即可.
【题目详解】
(1)连接,交于点,
连结.则,
故面.
又面,
因此.
(2)由(1)知即为二面角的平面角,
且.
在中应用余弦定理