分享
2023届日喀则市第四高级中学高三考前热身数学试卷(含解析).doc
下载文档

ID:19778

大小:1.92MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 日喀则市 第四 高级中学 考前 热身 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg 2.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的; 小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的, 若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A.小明 B.小红 C.小金 D.小金或小明 3.函数(且)的图象可能为( ) A. B. C. D. 4.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为( ) A. B. C. D. 5.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,( ) A. B. C. D. 6.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( ) A. B. C. D. 7.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( ) A. B. C. D. 8.已知某几何体的三视图如右图所示,则该几何体的体积为( ) A.3 B. C. D. 9.已知函数,存在实数,使得,则的最大值为( ) A. B. C. D. 10.已知,,,,.若实数,满足不等式组,则目标函数( ) A.有最大值,无最小值 B.有最大值,有最小值 C.无最大值,有最小值 D.无最大值,无最小值 11.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( ) A.是偶函数 B.是奇函数 C.是奇函数 D.是奇函数 12.为了得到函数的图象,只需把函数的图象上所有的点( ) A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长度 二、填空题:本题共4小题,每小题5分,共20分。 13.(5分)已知,且,则的值是____________. 14.设复数满足,则_________. 15.设,则______. 16.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数() (1)函数在点处的切线方程为,求函数的极值; (2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围. 18.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为. (1)求的直角坐标方程和的直角坐标; (2)设与交于,两点,线段的中点为,求. 19.(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L. (1)试用x,y表示L; (2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)? 20.(12分)已知双曲线及直线. (1)若l与C有两个不同的交点,求实数k的取值范围; (2)若l与C交于A,B两点,O是原点,且,求实数k的值. 21.(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”. (Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关? 男 女 总计 合格 不合格 总计 (Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望. 附: 0.100 0.050 0.010 0.001 2.706 3.841 6.635 10.828 22.(10分)如图,平面四边形为直角梯形,,,,将绕着翻折到. (1)为上一点,且,当平面时,求实数的值; (2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据y与x的线性回归方程为 y=0.85x﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A正确; 回归直线过样本点的中心(),B正确; 该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确; 该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误. 故选D. 2、B 【答案解析】 将三个人制作的所有情况列举出来,再一一论证. 【题目详解】 依题意,三个人制作的所有情况如下所示: 1 2 3 4 5 6 鸿福齐天 小明 小明 小红 小红 小金 小金 国富民强 小红 小金 小金 小明 小红 小明 兴国之路 小金 小红 小明 小金 小明 小红 若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红, 故选:B. 【答案点睛】 本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题. 3、D 【答案解析】 因为,故函数是奇函数,所以排除A,B;取,则,故选D. 考点:1.函数的基本性质;2.函数的图象. 4、B 【答案解析】 首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程. 【题目详解】 设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为, 故选:B 【答案点睛】 本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题. 5、C 【答案解析】 判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得. 【题目详解】 如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,∴, 设,则,,∴,. 故选:C. 【答案点睛】 本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角. 6、D 【答案解析】 根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项. 【题目详解】 因为是定义在上的增函数,故. 又有意义,故,故,所以. 令,则, 故在上为增函数,所以即, 整理得到. 故选:D. 【答案点睛】 本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题. 7、D 【答案解析】 根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象. 【题目详解】 由的图象可知,在上为增函数, 且在上存在正数,使得在上为增函数, 在为减函数, 故在有两个不同的零点,且在这两个零点的附近,有变化, 故排除A,B. 由在上为增函数可得在上恒成立,故排除C. 故选:D. 【答案点睛】 本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题. 8、B 【答案解析】 由三视图知:几何体是直三棱柱消去一个三棱锥,如图: 直三棱柱的体积为,消去的三棱锥的体积为, ∴几何体的体积,故选B. 点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积. 9、A 【答案解析】 画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解. 【题目详解】 由于, , 由于, 令,, 在↗,↘ 故. 故选:A 【答案点睛】 本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题. 10、B 【答案解析】 判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【题目详解】 由,,所以可得. , 所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示: 由此可以判断该目标函数一定有最大值和最小值. 故选:B 【答案点睛】 本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用. 11、C 【答案解析】 根据函数奇偶性的性质即可得到结论. 【题目详解】 解:是奇函数,是偶函数, ,, ,故函数是奇函数,故错误, 为偶函数,故错误, 是奇函数,故正确. 为偶函数,故错误, 故选:. 【答案点睛】 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键. 12、D 【答案解析】 通过变形,通过“左加右减”即可得到答案. 【题目详解】 根据题意,故只需把函数的图象 上所有的点向右平移个单位长度可得到函数的图象,故答案为D. 【答案点睛】 本题主要考查三角函数的平移变换,难度不大. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由于,且,则,得,则. 14、. 【答案解析】 利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果. 【题目详解】 ∵复数满足, ∴,∴, 故而可得,故答案为. 【答案点睛】 本题考查了复数的运算法则,共轭复数的概念,属于基础题. 15、121 【答案解析】 在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求. 【题目详解】 令,得,令,得,两式相加,得,所以. 故答案为:. 【答案点睛】 本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开