温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江西省
宜春市
上高三
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=( )
A. B. C.2 D.﹣2
2.执行如图所示的程序框图,若输出的,则①处应填写( )
A. B. C. D.
3.若,则“”是 “”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为( )
A.3 B.2 C. D.
5.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
6.函数,,的部分图象如图所示,则函数表达式为( )
A. B.
C. D.
7.已知集合,,则等于( )
A. B. C. D.
8.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有( )
A.①② B.①④ C.②③ D.①②④
9.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )
A. B. C. D.
10.双曲线﹣y2=1的渐近线方程是( )
A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=0
11.双曲线的渐近线方程为( )
A. B. C. D.
12.设,随机变量的分布列是
0
1
则当在内增大时,( )
A.减小,减小 B.减小,增大
C.增大,减小 D.增大,增大
二、填空题:本题共4小题,每小题5分,共20分。
13.已知等比数列满足,,则该数列的前5项的和为______________.
14.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:
①若m∥n,则m∥α;
②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③若α∥β,m⊂α,n⊂β,则m∥n;
④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;
其中正确命题的序号为_____.
15.在长方体中,,,,为的中点,则点到平面的距离是______.
16.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.
(1)当时,求与的交点的极坐标;
(2)直线与曲线交于,两点,线段中点为,求的值.
18.(12分)a,b,c分别为△ABC内角A,B,C的对边.已知a=3,,且B=60°.
(1)求△ABC的面积;
(2)若D,E是BC边上的三等分点,求.
19.(12分)设函数.
(1)若,求实数的取值范围;
(2)证明:,恒成立.
20.(12分)已知函数
(1)当时,若恒成立,求的最大值;
(2)记的解集为集合A,若,求实数的取值范围.
21.(12分)设函数.
(1)当时,求不等式的解集;
(2)若不等式恒成立,求实数a的取值范围.
22.(10分)已知集合,集合.
(1)求集合;
(2)若,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.
【题目详解】
因为z=(1+2i)(1+ai)=,
又因为z∈R,
所以,
解得a=-2.
故选:D
【答案点睛】
本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.
2、B
【答案解析】
模拟程序框图运行分析即得解.
【题目详解】
;
;.
所以①处应填写“”
故选:B
【答案点睛】
本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.
3、A
【答案解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.
【题目详解】
当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.
【答案点睛】
易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.
4、C
【答案解析】
设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.
【题目详解】
设射线OA与x轴正向所成的角为,由已知,,
,所以
,
当时,取得等号.
故选:C.
【答案点睛】
本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.
5、B
【答案解析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.
【题目详解】
根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,
把该几何体补成如下图所示的圆柱,
其体积为,故原几何体的体积为.
故选:B.
【答案点睛】
本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.
6、A
【答案解析】
根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.
【题目详解】
由图像知,,,解得,
因为函数过点,所以,
,即,
解得,因为,所以,
.
故选:A
【答案点睛】
本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.
7、B
【答案解析】
解不等式确定集合,然后由补集、并集定义求解.
【题目详解】
由题意或,
∴,
.
故选:B.
【答案点睛】
本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.
8、D
【答案解析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.
【题目详解】
解:由已知可得:圆:的圆心为(0,0),半径为2,
则圆心到直线的距离为:,
∴,
而,与的面积相等,
∴或,
即到直线的距离或时满足条件,
根据点到直线距离可知,①②④满足条件.
故选:D.
【答案点睛】
本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.
9、B
【答案解析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.
【题目详解】
设直线与圆相切于点,
因为是以圆的直径为斜边的圆内接三角形,所以,
又因为圆与直线的切点为,所以,
又,所以,
因此,
因此有,
所以,因此渐近线的方程为.
故选B
【答案点睛】
本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.
10、A
【答案解析】
试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.
解:双曲线
其渐近线方程是﹣y2=1
整理得x±2y=1.
故选A.
点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.
11、C
【答案解析】
根据双曲线的标准方程,即可写出渐近线方程.
【题目详解】
双曲线,
双曲线的渐近线方程为,
故选:C
【答案点睛】
本题主要考查了双曲线的简单几何性质,属于容易题.
12、C
【答案解析】
,,判断其在内的单调性即可.
【题目详解】
解:根据题意在内递增,
,
是以为对称轴,开口向下的抛物线,所以在上单调递减,
故选:C.
【答案点睛】
本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、31
【答案解析】
设,可化为,得,,,
14、④
【答案解析】
根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.
【题目详解】
对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;
对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;
对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;
对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;
综上知,正确命题的序号是④.
故答案为:④.
【答案点睛】
本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.
15、
【答案解析】
利用等体积法求解点到平面的距离
【题目详解】
由题在长方体中,,
,
所以,所以,
设点到平面的距离为
,解得
故答案为:
【答案点睛】
此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.
16、
【答案解析】
根据条件概率的求法,分别求得,再代入条件概率公式求解.
【题目详解】
根据题意得
所以
故答案为:
【答案点睛】
本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),;(2)
【答案解析】
(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;
(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.
【题目详解】
(1)依题意可知,直线的极坐标方程为(),
当时,联立解得交点,
当时,经检验满足两方程,(易漏解之处忽略的情况)
当时,无交点;
综上,曲线与直线的点极坐标为,,
(2)把直线的参数方程代入曲线,得,
可知,,
所以.
【答案点睛】
本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.
18、(1);(2)
【答案解析】
(1)根据正弦定理,可得△ABC为直角三角形,然后可计算b,可得结果.
(2)计算,然后根据余弦定理,可得,利用平方关系,可得结果.
【题目详解】
(1)△ABC中,由csinC=asinA+bsinB,
利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.
又a=3,B=60°,所以;
所以△ABC的面积为.
(2)设D靠近点B,则BD=DE=EC=1.
,
所以
所以.
【答案点睛】
本题考查正弦定理的应用,属基础题.
19、(1)(2)证明见解