分享
2023届山东省文登市大水泊中学高三(最后冲刺)数学试卷(含解析).doc
下载文档

ID:19747

大小:2.16MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 山东省 文登市 大水 中学 最后 冲刺 数学试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( ) A. B. C. D. 2.已知实数、满足不等式组,则的最大值为(  ) A. B. C. D. 3.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( ) A. B. C. D. 4.在复平面内,复数对应的点的坐标为( ) A. B. C. D. 5.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( ) A. B. C. D. 7.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( ) A.截止到2015年中国累计装机容量达到峰值 B.10年来全球新增装机容量连年攀升 C.10年来中国新增装机容量平均超过 D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过 8.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( ) A. B. C. D. 9.二项式展开式中,项的系数为( ) A. B. C. D. 10.若函数()的图象过点,则( ) A.函数的值域是 B.点是的一个对称中心 C.函数的最小正周期是 D.直线是的一条对称轴 11.△ABC的内角A,B,C的对边分别为,已知,则为( ) A. B. C.或 D.或 12.若复数z满足,则复数z在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二、填空题:本题共4小题,每小题5分,共20分。 13.若变量,满足约束条件则的最大值是______. 14.若,则______. 15.已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为________. 16.如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为. (Ⅰ)求椭圆的标准方程; (Ⅱ)是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值. 18.(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表: 送餐单数 38 39 40 41 42 甲公司天数 10 10 15 10 5 乙公司天数 10 15 10 10 5 (1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率; (2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题: ①求乙公司送餐员日工资的分布列和数学期望; ②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由. 19.(12分)已知函数(),不等式的解集为. (1)求的值; (2)若,,,且,求的最大值. 20.(12分)如图所示,在三棱锥中,,,,点为中点. (1)求证:平面平面; (2)若点为中点,求平面与平面所成锐二面角的余弦值. 21.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下: 研发费用(百万元) 2 3 6 10 13 15 18 21 销量(万盒) 1 1 2 2.5 3.5 3.5 4.5 6 (1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合); (2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望. 附:(1)相关系数 (2),,,. 22.(10分)如图(1)五边形中, ,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面. (1)求证:平面平面; (2)若直线与所成角的正切值为,求直线与平面所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围. 【题目详解】 由题设有,故,故椭圆, 因为点为上的任意一点,故. 又, 因为,故, 所以. 故选:D. 【答案点睛】 本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题. 2、A 【答案解析】 画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案. 【题目详解】 画出不等式组所表示平面区域,如图所示, 由目标函数,化为直线,当直线过点A时, 此时直线在y轴上的截距最大,目标函数取得最大值, 又由,解得, 所以目标函数的最大值为,故选A. 【答案点睛】 本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题. 3、D 【答案解析】 由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可. 【题目详解】 解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由, 得,当时,. 故选D. 【答案点睛】 本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题. 4、C 【答案解析】 利用复数的运算法则、几何意义即可得出. 【题目详解】 解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2), 故选:C 【答案点睛】 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 5、D 【答案解析】 根据复数运算,求得,再求其对应点即可判断. 【题目详解】 ,故其对应点的坐标为. 其位于第四象限. 故选:D. 【答案点睛】 本题考查复数的运算,以及复数对应点的坐标,属综合基础题. 6、A 【答案解析】 根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出. 【题目详解】 设事件A:检测5个人确定为“感染高危户”, 事件B:检测6个人确定为“感染高危户”, ∴,. 即 设,则 ∴ 当且仅当即时取等号,即. 故选:A. 【答案点睛】 本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题. 7、D 【答案解析】 先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择. 【题目详解】 年份 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 累计装机容量 158.1 197.2 237.8 282.9 318.7 370.5 434.3 489.2 542.7 594.1 新增装机容量 39.1 40.6 45.1 35.8 51.8 63.8 54.9 53.5 51.4 中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确. 故选:D 【答案点睛】 本题考查条形图,考查基本分析求解能力,属基础题. 8、D 【答案解析】 设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案. 【题目详解】 设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,. 故选:D. 【答案点睛】 本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题. 9、D 【答案解析】 写出二项式的通项公式,再分析的系数求解即可. 【题目详解】 二项式展开式的通项为,令,得,故项的系数为. 故选:D 【答案点睛】 本题主要考查了二项式定理的运算,属于基础题. 10、A 【答案解析】 根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论. 【题目详解】 由函数()的图象过点, 可得,即, ,, 故, 对于A,由,则,故A正确; 对于B,当时,,故B错误; 对于C,,故C错误; 对于D,当时,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开