温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
汾阳
中学
高三一诊
考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( )
A.69人 B.84人 C.108人 D.115人
2.已知向量,则向量在向量方向上的投影为( )
A. B. C. D.
3.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为( )
A.1 B. C.2 D.
4.函数的图象为C,以下结论中正确的是( )
①图象C关于直线对称;
②图象C关于点对称;
③由y =2sin2x的图象向右平移个单位长度可以得到图象C.
A.① B.①② C.②③ D.①②③
5.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )
A.6 海里 B.6海里 C.8海里 D.8海里
6.已知角的终边经过点P(),则sin()=
A. B. C. D.
7.为虚数单位,则的虚部为( )
A. B. C. D.
8.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动, 且总是平行于轴, 则的周长的取值范围是( )
A. B. C. D.
9.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为( )
A.2 B.4 C.5 D.6
10.记为等差数列的前项和.若,,则( )
A.5 B.3 C.-12 D.-13
11.函数的图像大致为( )
A. B.
C. D.
12.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.
14.在中,点在边上,且,设,,则________(用,表示)
15.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.
16.的展开式中,的系数是__________. (用数字填写答案)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,底面为菱形,底面,.
(1)求证:平面;
(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.
18.(12分)已知.
(1)若,求函数的单调区间;
(2)若不等式恒成立,求实数的取值范围.
19.(12分)已知数列满足,,其前n项和为.
(1)通过计算,,,猜想并证明数列的通项公式;
(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.
20.(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,,且平面平面,点在线段上移动(不与重合),是的中点.
(1)当四面体的外接球的表面积为时,证明:.平面
(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.
21.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.
(1)求点,的极坐标;
(2)若点为曲线上的动点,为线段的中点,求的最大值.
22.(10分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
先求得名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得名学生中对四大发明只能说出一种或一种也说不出的人数.
【题目详解】
在这100名学生中,只能说出一种或一种也说不出的有人,设对四大发明只能说出一种或一种也说不出的有人,则,解得人.
故选:D
【答案点睛】
本小题主要考查利用样本估计总体,属于基础题.
2、A
【答案解析】
投影即为,利用数量积运算即可得到结论.
【题目详解】
设向量与向量的夹角为,
由题意,得,,
所以,向量在向量方向上的投影为.
故选:A.
【答案点睛】
本题主要考察了向量的数量积运算,难度不大,属于基础题.
3、B
【答案解析】
画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.
【题目详解】
可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).
故选:B.
【答案点睛】
本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.
4、B
【答案解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.
【题目详解】
因为,
又,所以①正确.
,所以②正确.
将的图象向右平移个单位长度,得,所以③错误.
所以①②正确,③错误.
故选:B
【答案点睛】
本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.
5、A
【答案解析】
先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.
【题目详解】
由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,
∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.
在△ABC中,由正弦定理得,
即,∴.
故选:A.
【答案点睛】
本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.
6、A
【答案解析】
由题意可得三角函数的定义可知:
,,则:
本题选择A选项.
7、C
【答案解析】
利用复数的运算法则计算即可.
【题目详解】
,故虚部为.
故选:C.
【答案点睛】
本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.
8、B
【答案解析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.
【题目详解】
抛物线,则焦点,准线方程为,
根据抛物线定义可得,
圆,圆心为,半径为,
点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.
点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,
则的周长为,
所以,
故选:B.
【答案点睛】
本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.
9、B
【答案解析】
由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.
【题目详解】
由偶函数满足,
可得的图像关于直线对称且关于轴对称,
函数()的图像也关于对称,
函数的图像与函数()的图像的位置关系如图所示,
可知两个图像有四个交点,且两两关于直线对称,
则与的图像所有交点的横坐标之和为4.
故选:B
【答案点睛】
本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.
10、B
【答案解析】
由题得,,解得,,计算可得.
【题目详解】
,,,,解得,,
.
故选:B
【答案点睛】
本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.
11、A
【答案解析】
根据排除,,利用极限思想进行排除即可.
【题目详解】
解:函数的定义域为,恒成立,排除,,
当时,,当,,排除,
故选:.
【答案点睛】
本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.
12、D
【答案解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.
【题目详解】
设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.
故选:D
【答案点睛】
本题考查圆锥的表面积和球的表面积公式,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,,,的表达式,再进行数量积的运算,最后求和即可得出结果.
【题目详解】
解: 以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,
则,,,,
则,,,
设, ,
,
即点的坐标为,
则,,,
所以
故答案为:
【答案点睛】
本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.
14、
【答案解析】
结合图形及向量的线性运算将转化为用向量表示,即可得到结果.
【题目详解】
在中,因为,
所以,又因为,
所以.
故答案为:
【答案点睛】
本题主要考查三角形中向量的线性运算,关键是利用已知向量为基底,将未知向量通过几何条件向基底转化.
15、
【答案解析】
设
根据椭圆的几何性质可得
,
根据双曲线的几何性质可得,
,
即
故答案为
16、
【答案解析】
根据组合的知识,结合组合数的公式,可得结果.
【题目详解】
由题可知:项来源可以是:(1)取1个,4个
(2)取2个,3个
的系数为:
故答案为:
【答案点睛】
本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析(2)
【答案解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;
(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.
【题目详解】
(1)证明:底面为菱形,,
底面,平面,
又,平面,
平面;
(2)解:,,为等边三角形,
.
底面,是直线与平面所成的角为,