温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
太原
中高
第四
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知非零向量满足,,且与的夹角为,则( )
A.6 B. C. D.3
2.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为( )
A.2 B. C. D.5
3.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )
A. B. C. D.
4.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )
A.36 cm3 B.48 cm3 C.60 cm3 D.72 cm3
5.集合,,则( )
A. B. C. D.
6.已知空间两不同直线、,两不同平面,,下列命题正确的是( )
A.若且,则 B.若且,则
C.若且,则 D.若不垂直于,且,则不垂直于
7.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( )
A. B. C. D.
8.已知是虚数单位,则( )
A. B. C. D.
9.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( )
A. B.
C. D.
10.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
11.已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )
A.的值域是 B.是奇函数
C.是周期函数 D.是增函数
12.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设,则“”是“”的__________条件.
14.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______.
15.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.
16.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数
(I)当时,解不等式.
(II)若不等式恒成立,求实数的取值范围
18.(12分)已知.
(1)已知关于的不等式有实数解,求的取值范围;
(2)求不等式的解集.
19.(12分)已知函数.
(1)解不等式;
(2)若,,,求证:.
20.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.
21.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).
(1)应抽查男生与女生各多少人?
(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:
时间(小时)
[0,1]
(1,2]
(2,3]
(3,4]
(4,5]
(5,6]
频率
0.05
0.20
0.30
0.25
0.15
0.05
若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?
男生
女生
总计
每周平均体育锻炼时间不超过2小时
每周平均体育锻炼时间超过2小时
总计
附:K2.
P(K2≥k0)
0.100
0.050
0.010
0.005
2.706
3.841
6.635
7.879
22.(10分)已知函数,.
(1)当时,讨论函数的单调性;
(2)若,当时,函数,求函数的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.
【题目详解】
解:非零向量,满足,可知两个向量垂直,,且与的夹角为,
说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.
故选:.
【答案点睛】
本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.
2、B
【答案解析】
利用双曲线的定义和条件中的比例关系可求.
【题目详解】
.选B.
【答案点睛】
本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.
3、A
【答案解析】
设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可
【题目详解】
设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.
因为,所以,解得.
因为,所以.
设,易知平面ABC,则.
因为,所以,
即,解得.所以球Q的半径.
故选:A
【答案点睛】
本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题
4、B
【答案解析】
试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.
考点:三视图和几何体的体积.
5、A
【答案解析】
计算,再计算交集得到答案.
【题目详解】
,,故.
故选:.
【答案点睛】
本题考查了交集运算,属于简单题.
6、C
【答案解析】
因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.
7、C
【答案解析】
利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.
【题目详解】
因为,且,
所以.
故选:C.
【答案点睛】
本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.
8、B
【答案解析】
根据复数的乘法运算法则,直接计算,即可得出结果.
【题目详解】
.
故选B
【答案点睛】
本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.
9、A
【答案解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.
【题目详解】
根据题意,的图象与直线的相邻交点间的距离为,
所以 的周期为, 则,
所以,
由正弦函数和正切函数图象可知正确.
故选:A.
【答案点睛】
本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.
10、C
【答案解析】
试题分析:根据充分条件和必要条件的定义进行判断即可.
解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,
若数列{an}为单调递增数列,则a2>a1,成立,
即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,
故选C.
考点:必要条件、充分条件与充要条件的判断.
11、C
【答案解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.
【题目详解】
由表示不超过的最大正整数,其函数图象为
选项A,函数,故错误;
选项B,函数为非奇非偶函数,故错误;
选项C,函数是以1为周期的周期函数,故正确;
选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.
故选:C
【答案点睛】
本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.
12、C
【答案解析】
先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.
【题目详解】
所有的情况数有:种,
3个数中至少有2个阳数且能构成等差数列的情况有:
,共种,
所以目标事件的概率.
故选:C.
【答案点睛】
本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.
二、填空题:本题共4小题,每小题5分,共20分。
13、充分必要
【答案解析】
根据充分条件和必要条件的定义可判断两者之间的条件关系.
【题目详解】
当时,有,故“”是“”的充分条件.
当时,有,故“”是“”的必要条件.
故“”是“”的充分必要条件,
故答案为:充分必要.
【答案点睛】
本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题.
14、
【答案解析】
由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程.
【题目详解】
设圆的半径为,由题意可得,所以,
由题意设圆心,由题意可得,
由直线与圆相切可得,所以,
而,,所以,即,解得,
所以的最大值为2,当且仅当时取等号,可得,
所以圆心坐标为:,半径为,
所以圆的标准方程为:.
故答案为:.
【答案点睛】
本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.
15、①③④
【答案解析】
先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.
【题目详解】
∵,∴曲线在点处的切线方程为,
则.
∵,∴,
则是首项为1,公比为的等比数列,
从而,,.
故所有正确结论的编号是①③④.
故答案为:①③④
【答案点睛】
本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.
16、1
【答案解析】
当时,得,或,依题意