分享
2023届山西省太原五中高三第四次模拟考试数学试卷(含解析).doc
下载文档

ID:19690

大小:1.52MB

页数:17页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 山西省 太原 中高 第四 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知非零向量满足,,且与的夹角为,则( ) A.6 B. C. D.3 2.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为( ) A.2 B. C. D.5 3.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( ) A. B. C. D. 4.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( ) A.36 cm3 B.48 cm3 C.60 cm3 D.72 cm3 5.集合,,则( ) A. B. C. D. 6.已知空间两不同直线、,两不同平面,,下列命题正确的是( ) A.若且,则 B.若且,则 C.若且,则 D.若不垂直于,且,则不垂直于 7.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( ) A. B. C. D. 8.已知是虚数单位,则( ) A. B. C. D. 9.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( ) A. B. C. D. 10.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 11.已知函数,其中表示不超过的最大正整数,则下列结论正确的是( ) A.的值域是 B.是奇函数 C.是周期函数 D.是增函数 12.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.设,则“”是“”的__________条件. 14.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______. 15.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______. 16.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数 (I)当时,解不等式. (II)若不等式恒成立,求实数的取值范围 18.(12分)已知. (1)已知关于的不等式有实数解,求的取值范围; (2)求不等式的解集. 19.(12分)已知函数. (1)解不等式; (2)若,,,求证:. 20.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求和的直角坐标方程; (2)已知为曲线上的一个动点,求线段的中点到直线的最大距离. 21.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时). (1)应抽查男生与女生各多少人? (2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表: 时间(小时) [0,1] (1,2] (2,3] (3,4] (4,5] (5,6] 频率 0.05 0.20 0.30 0.25 0.15 0.05 若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”? 男生 女生 总计 每周平均体育锻炼时间不超过2小时 每周平均体育锻炼时间超过2小时 总计 附:K2. P(K2≥k0) 0.100 0.050 0.010 0.005 2.706 3.841 6.635 7.879 22.(10分)已知函数,. (1)当时,讨论函数的单调性; (2)若,当时,函数,求函数的最小值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【题目详解】 解:非零向量,满足,可知两个向量垂直,,且与的夹角为, 说明以向量,为邻边,为对角线的平行四边形是正方形,所以则. 故选:. 【答案点睛】 本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题. 2、B 【答案解析】 利用双曲线的定义和条件中的比例关系可求. 【题目详解】 .选B. 【答案点睛】 本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式. 3、A 【答案解析】 设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可 【题目详解】 设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r. 因为,所以,解得. 因为,所以. 设,易知平面ABC,则. 因为,所以, 即,解得.所以球Q的半径. 故选:A 【答案点睛】 本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题 4、B 【答案解析】 试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积. 考点:三视图和几何体的体积. 5、A 【答案解析】 计算,再计算交集得到答案. 【题目详解】 ,,故. 故选:. 【答案点睛】 本题考查了交集运算,属于简单题. 6、C 【答案解析】 因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C. 7、C 【答案解析】 利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值. 【题目详解】 因为,且, 所以. 故选:C. 【答案点睛】 本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果. 8、B 【答案解析】 根据复数的乘法运算法则,直接计算,即可得出结果. 【题目详解】 . 故选B 【答案点睛】 本题主要考查复数的乘法,熟记运算法则即可,属于基础题型. 9、A 【答案解析】 由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案. 【题目详解】 根据题意,的图象与直线的相邻交点间的距离为, 所以 的周期为, 则, 所以, 由正弦函数和正切函数图象可知正确. 故选:A. 【答案点睛】 本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 10、C 【答案解析】 试题分析:根据充分条件和必要条件的定义进行判断即可. 解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列, 若数列{an}为单调递增数列,则a2>a1,成立, 即“a2>a1”是“数列{an}为单调递增数列”充分必要条件, 故选C. 考点:必要条件、充分条件与充要条件的判断. 11、C 【答案解析】 根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论. 【题目详解】 由表示不超过的最大正整数,其函数图象为 选项A,函数,故错误; 选项B,函数为非奇非偶函数,故错误; 选项C,函数是以1为周期的周期函数,故正确; 选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误. 故选:C 【答案点睛】 本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题. 12、C 【答案解析】 先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率. 【题目详解】 所有的情况数有:种, 3个数中至少有2个阳数且能构成等差数列的情况有: ,共种, 所以目标事件的概率. 故选:C. 【答案点睛】 本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算. 二、填空题:本题共4小题,每小题5分,共20分。 13、充分必要 【答案解析】 根据充分条件和必要条件的定义可判断两者之间的条件关系. 【题目详解】 当时,有,故“”是“”的充分条件. 当时,有,故“”是“”的必要条件. 故“”是“”的充分必要条件, 故答案为:充分必要. 【答案点睛】 本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题. 14、 【答案解析】 由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程. 【题目详解】 设圆的半径为,由题意可得,所以, 由题意设圆心,由题意可得, 由直线与圆相切可得,所以, 而,,所以,即,解得, 所以的最大值为2,当且仅当时取等号,可得, 所以圆心坐标为:,半径为, 所以圆的标准方程为:. 故答案为:. 【答案点睛】 本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件. 15、①③④ 【答案解析】 先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号. 【题目详解】 ∵,∴曲线在点处的切线方程为, 则. ∵,∴, 则是首项为1,公比为的等比数列, 从而,,. 故所有正确结论的编号是①③④. 故答案为:①③④ 【答案点睛】 本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题. 16、1 【答案解析】 当时,得,或,依题意

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开