温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
浙江省
温州市
第五
十一
中高
下学
第一次
联考
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
2.已知双曲线的一条渐近线方程是,则双曲线的离心率为( )
A. B. C. D.
3.如图,平面与平面相交于,,,点,点,则下列叙述错误的是( )
A.直线与异面
B.过只有唯一平面与平行
C.过点只能作唯一平面与垂直
D.过一定能作一平面与垂直
4.i是虚数单位,若,则乘积的值是( )
A.-15 B.-3 C.3 D.15
5.已知实数满足约束条件,则的最小值是
A. B. C.1 D.4
6.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )
A.甲得分的平均数比乙大 B.甲得分的极差比乙大
C.甲得分的方差比乙小 D.甲得分的中位数和乙相等
7.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )
A. B. C. D.
8.已知复数,则对应的点在复平面内位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
9.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )
A. B. C. D.
10.复数的实部与虚部相等,其中为虚部单位,则实数( )
A.3 B. C. D.
11.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)( )
A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月
12.已知函数满足:当时,,且对任意,都有,则( )
A.0 B.1 C.-1 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,已知,则的最小值是________.
14.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.
15.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.
16.若实数,满足,则的最小值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在锐角中,分别是角的对边,,,且.
(1)求角的大小;
(2)求函数的值域.
18.(12分)已知圆外有一点,过点作直线.
(1)当直线与圆相切时,求直线的方程;
(2)当直线的倾斜角为时,求直线被圆所截得的弦长.
19.(12分)已知函数,.
(1)求函数的极值;
(2)当时,求证:.
20.(12分)已知函数,
(1)若,求的单调区间和极值;
(2)设,且有两个极值点,,若,求的最小值.
21.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.
(I)求{an}的通项公式;
(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.
22.(10分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.
(Ⅰ)证明:面;
(Ⅱ)若,求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
先解不等式化简两个条件,利用集合法判断充分必要条件即可
【题目详解】
解不等式可得,
解绝对值不等式可得,
由于为的子集,
据此可知“”是“”的必要不充分条件.
故选:B
【答案点睛】
本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.
2、D
【答案解析】
双曲线的渐近线方程是,所以,即 , ,即 ,,故选D.
3、D
【答案解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.
【题目详解】
A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.
B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.
C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.
D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.
故选:D
【答案点睛】
本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.
4、B
【答案解析】
,∴,选B.
5、B
【答案解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,
设,则,易知当直线经过点时,z取得最小值,
由,解得,所以,所以,故选B.
6、B
【答案解析】
由平均数、方差公式和极差、中位数概念,可得所求结论.
【题目详解】
对于甲,;
对于乙,,
故正确;
甲的极差为,乙的极差为,故错误;
对于甲,方差.5,
对于乙,方差,故正确;
甲得分的中位数为,乙得分的中位数为,故正确.
故选:.
【答案点睛】
本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.
7、C
【答案解析】
根据题目中的基底定义求解.
【题目详解】
因为,
,
,
,
,
,
所以能作为集合的基底,
故选:C
【答案点睛】
本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.
8、A
【答案解析】
利用复数除法运算化简,由此求得对应点所在象限.
【题目详解】
依题意,对应点为,在第一象限.
故选A.
【答案点睛】
本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.
9、D
【答案解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.
考点:本题主要考查三视图及几何体体积的计算.
10、B
【答案解析】
利用乘法运算化简复数即可得到答案.
【题目详解】
由已知,,所以,解得.
故选:B
【答案点睛】
本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.
11、C
【答案解析】
根据图形,计算出,然后解不等式即可.
【题目详解】
解:,
点在直线上
,
令
因为横轴1代表2019年8月,所以横轴13代表2020年8月,
故选:C
【答案点睛】
考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.
12、C
【答案解析】
由题意可知,代入函数表达式即可得解.
【题目详解】
由可知函数是周期为4的函数,
.
故选:C.
【答案点睛】
本题考查了分段函数和函数周期的应用,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.
详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.
点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.
14、
【答案解析】
分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;
【题目详解】
如图,分别取,的中点,,连接,
则易得,,,,
由图形的对称性可知球心必在的延长线上,
设球心为,半径为,,可得,解得,.
故该球的表面积为.
故答案为:
【答案点睛】
本题考查多面体的外接球的计算,属于中档题.
15、
【答案解析】
由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.
【题目详解】
由题意,.
展开式通项为,由得,
∴常数项为.
故答案为:.
【答案点睛】
本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.
16、
【答案解析】
由约束条件先画出可行域,然后求目标函数的最小值.
【题目详解】
由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.
故答案为.
【答案点睛】
本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)
【答案解析】
(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;
(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.
【题目详解】
(1),,
由正弦定理得:,
即,
,,,
又,.
(2)在锐角中,,.
.
,,,,
函数的值域为.
【答案点睛】
本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.
18、(1)或(2).
【答案解析】
(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;
(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.
【题目详解】
解: (1)由题意可得,直线与圆相切
当斜率不存在时,直线的方程为,满足题意
当斜率存在时,设直线的方程为,即
∴,解得
∴直线的方程为
∴直线的方程为或
(2)当直线的倾斜角为时,直线的方程为
圆心到直线的距离为
∴弦长为
【答案点睛】
本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.
19、 (1) 的极小值为,无极大值.(2)见解析.
【答案解析】
(1)对求导,确定函数单调性,得到函数极值.
(2)构造函数,证明恒成立,得到,
,得证.
【题目详解】
(1)由题意知,,
令,得,令,得.
则在上单调递减,在上单调递增,
所以的极小值为,无极大值.
(2)当时,要证,即证.
令,则,
令,得,令,得,
则在上单调递减,在上单调递增,
所以当时,,
所以,即.因为时,,
所以当时,,
所以当时,不等式成立.
【答案点睛】
本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.
20、(1)增区间为,减区间为; 极小值,无极大值;(2)
【答案解