温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
辽宁省
凤城市
通远堡
高级中学
冲刺
模拟
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在上的奇函数满足,若,,则( )
A. B.0 C.1 D.2
2.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( )
A.1 B.2 C.3 D.4
3.已知命题:,,则为( )
A., B.,
C., D.,
4.已知无穷等比数列的公比为2,且,则( )
A. B. C. D.
5.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )
A. B.2 C.4 D.
6.已知复数,其中,,是虚数单位,则( )
A. B. C. D.
7.在展开式中的常数项为
A.1 B.2 C.3 D.7
8.函数在区间上的大致图象如图所示,则可能是( )
A.
B.
C.
D.
9.在中,点D是线段BC上任意一点,,,则( )
A. B.-2 C. D.2
10.若实数满足的约束条件,则的取值范围是( )
A. B. C. D.
11.已知命题:R,;命题 :R,,则下列命题中为真命题的是( )
A. B. C. D.
12.已知函数(),若函数在上有唯一零点,则的值为( )
A.1 B.或0 C.1或0 D.2或0
二、填空题:本题共4小题,每小题5分,共20分。
13.的展开式中含的系数为__________.(用数字填写答案)
14.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.
15.平面向量与的夹角为,,,则__________.
16.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
18.(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求和的普通方程;
(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.
19.(12分)已知等差数列满足,.
(l)求等差数列的通项公式;
(2)设,求数列的前项和.
20.(12分)已知数列满足,,数列满足.
(Ⅰ)求证数列是等比数列;
(Ⅱ)求数列的前项和.
21.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:
月收入(单位:百元)
频数
5
10
5
5
频率
0.1
0.2
0.1
0.1
赞成人数
4
8
12
5
2
1
(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.
(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.
(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.
22.(10分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB =2BC,点Q为AE的中点.
(1)求证:AC//平面DQF;
(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.
【题目详解】
由已知为奇函数,得,
而,
所以,
所以,即的周期为.
由于,,,
所以,
,
,
.
所以,
又,
所以.
故选:C
【答案点睛】
本小题主要考查函数的奇偶性和周期性,属于基础题.
2、B
【答案解析】
设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.
【题目详解】
解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;
对于②,连结,,在中,,而,是的中点,所以,②正确;
对于③由②可知,在中,,连结,易知,而在中,,,
即,又,面,平面平面,③正确;
以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;
, ,, , , ;
, ;
异面直线与所成角为,,故.④不正确.
故选:.
【答案点睛】
本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.
3、C
【答案解析】
根据全称量词命题的否定是存在量词命题,即得答案.
【题目详解】
全称量词命题的否定是存在量词命题,且命题:,,
.
故选:.
【答案点睛】
本题考查含有一个量词的命题的否定,属于基础题.
4、A
【答案解析】
依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。
【题目详解】
因为无穷等比数列的公比为2,则无穷等比数列的公比为。
由有,,解得,所以,
,故选A。
【答案点睛】
本题主要考查无穷等比数列求和公式的应用。
5、C
【答案解析】
设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.
【题目详解】
圆可化为.
设,
则的斜率分别为,
所以的方程为,即,
,即,
由于都过点,所以,
即都在直线上,
所以直线的方程为,恒过定点,
即直线过圆心,
则直线截圆所得弦长为4.
故选:C.
【答案点睛】
本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.
6、D
【答案解析】
试题分析:由,得,则,故选D.
考点:1、复数的运算;2、复数的模.
7、D
【答案解析】
求出展开项中的常数项及含的项,问题得解。
【题目详解】
展开项中的常数项及含的项分别为:
,,
所以展开式中的常数项为:.
故选:D
【答案点睛】
本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。
8、B
【答案解析】
根据特殊值及函数的单调性判断即可;
【题目详解】
解:当时,,无意义,故排除A;
又,则,故排除D;
对于C,当时,,所以不单调,故排除C;
故选:B
【答案点睛】
本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.
9、A
【答案解析】
设,用表示出,求出的值即可得出答案.
【题目详解】
设
由
,
,
.
故选:A
【答案点睛】
本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.
10、B
【答案解析】
根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.
【题目详解】
实数满足的约束条件,画出可行域如下图所示:
将线性目标函数化为,
则将平移,平移后结合图像可知,当经过原点时截距最小,;
当经过时,截距最大值,,
所以线性目标函数的取值范围为,
故选:B.
【答案点睛】
本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.
11、B
【答案解析】
根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.
【题目详解】
对命题:
可知,
所以R,
故命题为假命题
命题 :
取,可知
所以R,
故命题为真命题
所以为真命题
故选:B
【答案点睛】
本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.
12、C
【答案解析】
求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;
【题目详解】
解:∵(),
∴,∴当时,由得,
则在上单调递减,在上单调递增,
所以是极小值,∴只需,
即.令,则,∴函数在上单
调递增.∵,∴;
当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0.
故选:C
【答案点睛】
本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题意得,二项式展开式的通项为,
令,则,所以得系数为.
14、
【答案解析】
根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.
【题目详解】
由图可知:,所以,
又因为,所以,
所以.
故答案为:.
【答案点睛】
本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.
15、
【答案解析】
由平面向量模的计算公式,直接计算即可.
【题目详解】
因为平面向量与的夹角为,所以,
所以;
故答案为
【答案点睛】
本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.
16、60
【答案解析】
试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.
考点:排列组合.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),.(2)
【答案解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.
(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.
【题目详解】
(1)曲线的参数方程为(为参数),
消去得,
把,代入得,
从而得的极坐标方程为,
∵直线的直角坐标方程为,其倾斜角为,
∴直线的极坐标方程为.
(2)将代入曲线的极坐标方程分别得到
,
则.
【答案点睛】
本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.
18、(1)曲线的普通方程为:;曲线的普通方程为:(2)
【答案解析】
(1)消去曲线参数方程中的参数,求得和的普通方程.
(2)设出过原点的直线的极坐标方程,代入曲线的极坐标方程,求得的表达式,结合三角函数值域的求法,求得的最小值.
【题目详解】
(1)曲线的普通方程为:;
曲线的普通方程为:.
(2)设过原点的直线的极坐标方程为;
由得,所以曲线的极坐标方程