分享
2023届辽宁省凤城市通远堡高级中学高三冲刺模拟数学试卷(含解析).doc
下载文档

ID:19277

大小:1.91MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 辽宁省 凤城市 通远堡 高级中学 冲刺 模拟 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.定义在上的奇函数满足,若,,则( ) A. B.0 C.1 D.2 2.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( ) A.1 B.2 C.3 D.4 3.已知命题:,,则为( ) A., B., C., D., 4.已知无穷等比数列的公比为2,且,则( ) A. B. C. D. 5.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( ) A. B.2 C.4 D. 6.已知复数,其中,,是虚数单位,则( ) A. B. C. D. 7.在展开式中的常数项为   A.1 B.2 C.3 D.7 8.函数在区间上的大致图象如图所示,则可能是( ) A. B. C. D. 9.在中,点D是线段BC上任意一点,,,则( ) A. B.-2 C. D.2 10.若实数满足的约束条件,则的取值范围是( ) A. B. C. D. 11.已知命题:R,;命题 :R,,则下列命题中为真命题的是( ) A. B. C. D. 12.已知函数(),若函数在上有唯一零点,则的值为( ) A.1 B.或0 C.1或0 D.2或0 二、填空题:本题共4小题,每小题5分,共20分。 13.的展开式中含的系数为__________.(用数字填写答案) 14.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______. 15.平面向量与的夹角为,,,则__________. 16.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求曲线和直线的极坐标方程; (2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值. 18.(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数). (1)求和的普通方程; (2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值. 19.(12分)已知等差数列满足,. (l)求等差数列的通项公式; (2)设,求数列的前项和. 20.(12分)已知数列满足,,数列满足. (Ⅰ)求证数列是等比数列; (Ⅱ)求数列的前项和. 21.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表: 月收入(单位:百元) 频数 5 10 5 5 频率 0.1 0.2 0.1 0.1 赞成人数 4 8 12 5 2 1 (1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图. (2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望. (3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果. 22.(10分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB =2BC,点Q为AE的中点. (1)求证:AC//平面DQF; (2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 首先判断出是周期为的周期函数,由此求得所求表达式的值. 【题目详解】 由已知为奇函数,得, 而, 所以, 所以,即的周期为. 由于,,, 所以, , , . 所以, 又, 所以. 故选:C 【答案点睛】 本小题主要考查函数的奇偶性和周期性,属于基础题. 2、B 【答案解析】 设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误. 【题目详解】 解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确; 对于②,连结,,在中,,而,是的中点,所以,②正确; 对于③由②可知,在中,,连结,易知,而在中,,, 即,又,面,平面平面,③正确; 以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系; , ,, , , ; , ; 异面直线与所成角为,,故.④不正确. 故选:. 【答案点睛】 本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力. 3、C 【答案解析】 根据全称量词命题的否定是存在量词命题,即得答案. 【题目详解】 全称量词命题的否定是存在量词命题,且命题:,, . 故选:. 【答案点睛】 本题考查含有一个量词的命题的否定,属于基础题. 4、A 【答案解析】 依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。 【题目详解】 因为无穷等比数列的公比为2,则无穷等比数列的公比为。 由有,,解得,所以, ,故选A。 【答案点睛】 本题主要考查无穷等比数列求和公式的应用。 5、C 【答案解析】 设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解. 【题目详解】 圆可化为. 设, 则的斜率分别为, 所以的方程为,即, ,即, 由于都过点,所以, 即都在直线上, 所以直线的方程为,恒过定点, 即直线过圆心, 则直线截圆所得弦长为4. 故选:C. 【答案点睛】 本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题. 6、D 【答案解析】 试题分析:由,得,则,故选D. 考点:1、复数的运算;2、复数的模. 7、D 【答案解析】 求出展开项中的常数项及含的项,问题得解。 【题目详解】 展开项中的常数项及含的项分别为: ,, 所以展开式中的常数项为:. 故选:D 【答案点睛】 本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。 8、B 【答案解析】 根据特殊值及函数的单调性判断即可; 【题目详解】 解:当时,,无意义,故排除A; 又,则,故排除D; 对于C,当时,,所以不单调,故排除C; 故选:B 【答案点睛】 本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题. 9、A 【答案解析】 设,用表示出,求出的值即可得出答案. 【题目详解】 设 由 , , . 故选:A 【答案点睛】 本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题. 10、B 【答案解析】 根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围. 【题目详解】 实数满足的约束条件,画出可行域如下图所示: 将线性目标函数化为, 则将平移,平移后结合图像可知,当经过原点时截距最小,; 当经过时,截距最大值,, 所以线性目标函数的取值范围为, 故选:B. 【答案点睛】 本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题. 11、B 【答案解析】 根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果. 【题目详解】 对命题: 可知, 所以R, 故命题为假命题 命题 : 取,可知 所以R, 故命题为真命题 所以为真命题 故选:B 【答案点睛】 本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题. 12、C 【答案解析】 求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断; 【题目详解】 解:∵(), ∴,∴当时,由得, 则在上单调递减,在上单调递增, 所以是极小值,∴只需, 即.令,则,∴函数在上单 调递增.∵,∴; 当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0. 故选:C 【答案点睛】 本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由题意得,二项式展开式的通项为, 令,则,所以得系数为. 14、 【答案解析】 根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值. 【题目详解】 由图可知:,所以, 又因为,所以, 所以. 故答案为:. 【答案点睛】 本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有. 15、 【答案解析】 由平面向量模的计算公式,直接计算即可. 【题目详解】 因为平面向量与的夹角为,所以, 所以; 故答案为 【答案点睛】 本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型. 16、60 【答案解析】 试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种. 考点:排列组合. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1),.(2) 【答案解析】 (1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程. (2)将直线的极坐标方程代入曲线、可得,进而代入可得的值. 【题目详解】 (1)曲线的参数方程为(为参数), 消去得, 把,代入得, 从而得的极坐标方程为, ∵直线的直角坐标方程为,其倾斜角为, ∴直线的极坐标方程为. (2)将代入曲线的极坐标方程分别得到 , 则. 【答案点睛】 本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题. 18、(1)曲线的普通方程为:;曲线的普通方程为:(2) 【答案解析】 (1)消去曲线参数方程中的参数,求得和的普通方程. (2)设出过原点的直线的极坐标方程,代入曲线的极坐标方程,求得的表达式,结合三角函数值域的求法,求得的最小值. 【题目详解】 (1)曲线的普通方程为:; 曲线的普通方程为:. (2)设过原点的直线的极坐标方程为; 由得,所以曲线的极坐标方程

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开