分享
2023届浙江省萧山三中高三第二次联考数学试卷(含解析).doc
下载文档

ID:19263

大小:1.89MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 浙江省 萧山三 中高 第二次 联考 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设复数满足,则( ) A. B. C. D. 2.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( ) A. B. C. D. 3.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是 A.函数的最小正周期是 B.函数的图象关于点成中心对称 C.函数在单调递增 D.函数的图象向右平移后关于原点成中心对称 4.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为( ) A.20 B.30 C.50 D.60 5.已知双曲线的一条渐近线方程是,则双曲线的离心率为( ) A. B. C. D. 6.若复数满足,则( ) A. B. C. D. 7.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( ) A.7 B.15 C.31 D.63 9.设,,是非零向量.若,则( ) A. B. C. D. 10.已知,,则( ) A. B. C.3 D.4 11.已知,,,则的大小关系为( ) A. B. C. D. 12.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____. 14.已知,且,则__________. 15.已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为_____. 16.已知随机变量服从正态分布,若,则_________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围. 18.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,. (1)求数列的前n项和; (2)若,求数列的前n项和为. 19.(12分)设 (1)当时,求不等式的解集; (2)若,求的取值范围. 20.(12分)在四棱锥中,是等边三角形,点在棱上,平面平面. (1)求证:平面平面; (2)若,求直线与平面所成角的正弦值的最大值; (3)设直线与平面相交于点,若,求的值. 21.(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表: 序号 选科情况 序号 选科情况 序号 选科情况 序号 选科情况 1 134 11 236 21 156 31 235 2 235 12 234 22 235 32 236 3 235 13 145 23 245 33 235 4 145 14 135 24 235 34 135 5 156 15 236 25 256 35 156 6 245 16 236 26 156 36 236 7 256 17 156 27 134 37 156 8 235 18 236 28 235 38 134 9 235 19 145 29 246 39 235 10 236 20 235 30 156 40 245 (1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人? (2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关. 附: 0.100 0.050 0.010 0.001 2.706 3.841 6.635 10.828 (3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望. 22.(10分)在中,角所对的边分别为,若,,,且. (1)求角的值; (2)求的最大值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据复数运算,即可容易求得结果. 【题目详解】 . 故选:D. 【答案点睛】 本题考查复数的四则运算,属基础题. 2、D 【答案解析】 因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得. 【题目详解】 因为双曲线分左右支,所以, 根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:, 即,由得. 故选:. 【答案点睛】 本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平. 3、B 【答案解析】 根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案. 【题目详解】 根据给定函数的图象,可得点的横坐标为,所以,解得, 所以的最小正周期, 不妨令,,由周期,所以, 又,所以,所以, 令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B. 【答案点睛】 本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题. 4、D 【答案解析】 先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解. 【题目详解】 由题意,设A点的坐标为,根据对称性可得, 则的面积为, 当最大时,的面积最大, 由图象可知,当点A在椭圆的上下顶点时,此时的面积最大, 又由,可得椭圆的上下顶点坐标为, 所以的面积的最大值为. 故选:D. 【答案点睛】 本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用. 5、D 【答案解析】 双曲线的渐近线方程是,所以,即 , ,即 ,,故选D. 6、C 【答案解析】 化简得到,,再计算复数模得到答案. 【题目详解】 ,故, 故,. 故选:. 【答案点睛】 本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力. 7、D 【答案解析】 根据复数运算,求得,再求其对应点即可判断. 【题目详解】 ,故其对应点的坐标为. 其位于第四象限. 故选:D. 【答案点睛】 本题考查复数的运算,以及复数对应点的坐标,属综合基础题. 8、B 【答案解析】 试题分析:由程序框图可知:①,;②,;③,;④,; ⑤,. 第⑤步后输出,此时,则的最大值为15,故选B. 考点:程序框图. 9、D 【答案解析】 试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D. 考点:平面向量数量积. 【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果. 10、A 【答案解析】 根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果. 【题目详解】 因为,所以, 解得 则. 故选:A. 【答案点睛】 本题考查相等复数的特征和复数的模,属于基础题. 11、A 【答案解析】 根据指数函数与对数函数的单调性,借助特殊值即可比较大小. 【题目详解】 因为, 所以. 因为, 所以, 因为,为增函数, 所以 所以, 故选:A. 【答案点睛】 本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题. 12、A 【答案解析】 先通过降幂公式和辅助角法将函数转化为,再求最值. 【题目详解】 已知函数f(x)=sin2x+sin2(x), =, =, 因为, 所以f(x)的最小值为. 故选:A 【答案点睛】 本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、-1 【答案解析】 讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣14,计算等号成立的条件得到答案. 【题目详解】 已知关于x的不等式(ax﹣a1﹣4)(x﹣4)>0, ①a<0时,[x﹣(a)](x﹣4)<0,其中a0, 故解集为(a,4), 由于a(﹣a)≤﹣14, 当且仅当﹣a,即a=﹣1时取等号, ∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣1; ②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件; ③a>0时,[x﹣(a)](x﹣4)>0,其中a4, ∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件; 综上所述,a=﹣1. 故答案为:﹣1. 【答案点睛】 本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力. 14、 【答案解析】 试题分析:因,故,所以,,应填. 考点:三角变换及运用. 15、 【答案解析】 试题分析:根据题意设三角形的三边长分别设为为,所对的角为最大角,设为,则根据余弦定理得,故答案为. 考点:余弦定理及等比数列的定义. 16、0.4 【答案解析】 因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解. 【题目详解】 因为随机变量ζ服从正态分布 所以正态曲线关于对

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开