温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
浙江省
台州市
书生
中学
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数与在上最多有n个交点,交点分别为(,……,n),则( )
A.7 B.8 C.9 D.10
2.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )
A. B. C. D.
3.关于函数,下列说法正确的是( )
A.函数的定义域为
B.函数一个递增区间为
C.函数的图像关于直线对称
D.将函数图像向左平移个单位可得函数的图像
4.下列命题中,真命题的个数为( )
①命题“若,则”的否命题;
②命题“若,则或”;
③命题“若,则直线与直线平行”的逆命题.
A.0 B.1 C.2 D.3
5.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是( )
A. B. C. D.
6.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则
A. B. C. D.
7.设点,,不共线,则“”是“”( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
8.如果实数满足条件,那么的最大值为( )
A. B. C. D.
9.若均为任意实数,且,则 的最小值为( )
A. B. C. D.
10.已知等比数列的各项均为正数,设其前n项和,若(),则( )
A.30 B. C. D.62
11.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( )
A. B. C. D.
12.设,则复数的模等于( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.满足约束条件的目标函数的最小值是 .
14.已知是同一球面上的四个点,其中平面,是正三角形,,则该球的表面积为______.
15.已知实数,满足,则的最大值为______.
16.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四棱锥中,平面,,,.
(I)证明:;
(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.
18.(12分)已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.
(1)求椭圆C的方程;
(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.
19.(12分)已知函数,的最大值为.
求实数b的值;
当时,讨论函数的单调性;
当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.
20.(12分)如图,在直角中,,,,点在线段上.
(1)若,求的长;
(2)点是线段上一点,,且,求的值.
21.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).
(1)请用角表示清洁棒的长;
(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
22.(10分)已知函数.
(1)设,若存在两个极值点,,且,求证:;
(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.
【题目详解】
由题可知:直线过定点
且在是关于对称
如图
通过图像可知:直线与最多有9个交点
同时点左、右边各四个交点关于对称
所以
故选:C
【答案点睛】
本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.
2、A
【答案解析】
列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.
【题目详解】
金、木、水、火、土任取两类,共有:
金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,
其中两类元素相生的有火木、火土、木水、水金、金土共5结果,
所以2类元素相生的概率为,故选A.
【答案点睛】
本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.
3、B
【答案解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.
【题目详解】
,
故函数的定义域为,故错误;
当时,,函数单调递增,故正确;
当,关于的对称的直线为不在定义域内,故错误.
平移得到的函数定义域为,故不可能为,错误.
故选:.
【答案点睛】
本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.
4、C
【答案解析】
否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.
【题目详解】
①的逆命题为“若,则”,
令,可知该命题为假命题,故否命题也为假命题;
②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;
③的逆命题为“若直线与直线平行,则”,该命题为真命题.
故选:C.
【答案点睛】
本题考查判断命题真假. 判断命题真假的思路:
(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.
(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:
①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.
5、C
【答案解析】
先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.
【题目详解】
先作出函数在上的部分图象,再作出关于原点对称的图象,
如图所示,当时,对称后的图象不可能与在的图象有3个交点;
当时,要使函数关于原点对称后的图象与所作的图象有3个交点,
则,解得.
故选:C.
【答案点睛】
本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.
6、B
【答案解析】
由题意知,,由,知,由此能求出.
【题目详解】
由题意知,,
,解得,
,
.
故选:B.
【答案点睛】
本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.
7、C
【答案解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.
【题目详解】
由于点,,不共线,则“”;
故“”是“”的充分必要条件.
故选:C.
【答案点睛】
本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.
8、B
【答案解析】
解:当直线过点时,最大,故选B
9、D
【答案解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.
【题目详解】
由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,
故选D.
【答案点睛】
本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.
10、B
【答案解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.
【题目详解】
设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,
因此.
故选:B
【答案点睛】
本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.
11、C
【答案解析】
画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.
【题目详解】
作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.
故选:
【答案点睛】
解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.
12、C
【答案解析】
利用复数的除法运算法则进行化简,再由复数模的定义求解即可.
【题目详解】
因为,
所以,
由复数模的定义知,.
故选:C
【答案点睛】
本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、-2
【答案解析】
可行域是如图的菱形ABCD,
代入计算,
知为最小.
14、
【答案解析】
求得等边三角形的外接圆半径,利用勾股定理求得三棱锥外接球的半径,进而求得外接球的表面积.
【题目详解】
设是等边三角形的外心,则球心在其正上方处.设,由正弦定理得.所以得三棱锥外接球的半径,所以外接球的表面积为.
故答案为:
【答案点睛】
本小题主要考查几何体外接球表面积的计算,属于基础题.
15、
【答案解析】
画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.
【题目详解】
不等式组表示的平面区域如下所示:
因为可以理解为点与构成直线的斜率,
数形结合可知,当且仅当目标函数过点时,斜率取得最大值,
故的最大值为.
故答案为:.
【答案点睛】
本题考查目标函数为斜率型的规划问题,属基础题.
16、
【答案解析】
如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)见解析;(Ⅱ)
【答案解析】
(Ⅰ)取的中点,连接,由,,得三点