温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏省
高淳
高级中学
第二次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,,若,则( )
A. B. C. D.
2.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是( )
A. B.
C. D.
3.如图,在中,点,分别为,的中点,若,,且满足,则等于( )
A.2 B. C. D.
4.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( )
A.85 B.84 C.57 D.56
5.已知正项等比数列中,存在两项,使得,,则的最小值是( )
A. B. C. D.
6.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )
A. B. C. D.
7.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )
A.14种 B.15种 C.16种 D.18种
8.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )
A.或 B.或 C.或 D.
9.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )
A. B. C. D.
10.已知,则的大小关系为
A. B. C. D.
11.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是( )
A.2 B.3 C.4 D.1
12.若,则实数的大小关系为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知各项均为正数的等比数列的前项积为,,(且),则__________.
14.展开式中的系数为_________.(用数字做答)
15.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.
16.记为数列的前项和,若,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.
18.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.
(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.
(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.
19.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.
20.(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.
(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;
(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;
(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.
21.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
22.(10分)是数列的前项和,且.
(1)求数列的通项公式;
(2)若,求数列中最小的项.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用平面向量平行的坐标条件得到参数x的值.
【题目详解】
由题意得,,
,
,
解得.
故选A.
【答案点睛】
本题考查向量平行定理,考查向量的坐标运算,属于基础题.
2、A
【答案解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.
【题目详解】
函数的图象先向右平移个单位长度,
可得的图象,
再将图象上每个点的横坐标变为原来的倍(纵坐标不变),
得到函数的图象,
∴周期,
若函数在上没有零点,
∴ ,
∴ ,
,解得,
又,解得,
当k=0时,解,
当k=-1时,,可得,
.
故答案为:A.
【答案点睛】
本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.
3、D
【答案解析】
选取为基底,其他向量都用基底表示后进行运算.
【题目详解】
由题意是的重心,
,
∴,,
∴,
故选:D.
【答案点睛】
本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.
4、A
【答案解析】
先求,再确定展开式中的有理项,最后求系数之和.
【题目详解】
解:的展开式中二项式系数和为256
故,
要求展开式中的有理项,则
则二项式展开式中有理项系数之和为:
故选:A
【答案点睛】
考查二项式的二项式系数及展开式中有理项系数的确定,基础题.
5、C
【答案解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.
【题目详解】
,,或(舍).
,,.
当,时;
当,时;
当,时,,所以最小值为.
故选:C.
【答案点睛】
本题考查等比数列通项公式基本量的计算及最小值,属于基础题.
6、C
【答案解析】
作,;,由题意,由二倍角公式即得解.
【题目详解】
由题意,,准线:,
作,;,
设,
故,,
.
故选:C
【答案点睛】
本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
7、D
【答案解析】
采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起
【题目详解】
首先将黑球和白球排列好,再插入红球.
情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种;
情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.
综上所述,共有14+4=18种.
故选:D
【答案点睛】
本题考查排列组合公式的具体应用,插空法的应用,属于基础题
8、A
【答案解析】
过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.
【题目详解】
过作与准线垂直,垂足为,,
则当取得最大值时,最大,此时与抛物线相切,
易知此时直线的斜率存在,设切线方程为,
则.则,
则直线的方程为.
故选:A.
【答案点睛】
本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.
9、D
【答案解析】
可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值.
【题目详解】
可设的内切圆的圆心为,为切点,且为中点,,
设,,则,且有,解得,,
设,,设圆切于点,则,,
由,解得,,
,所以为等边三角形,
所以,,解得.
因此,该椭圆的离心率为.
故选:D.
【答案点睛】
本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题.
10、D
【答案解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.
详解:由题意可知:,即,,即,
,即,综上可得:.本题选择D选项.
点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.
11、B
【答案解析】
将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.
【题目详解】
根据实际问题可以转化为等比数列问题,
在等比数列中,公比,前项和为,,,求的值.
因为,解得,,解得.故选B.
【答案点睛】
本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.
12、A
【答案解析】
将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.
【题目详解】
依题意,由对数函数的性质可得.
又因为,故.
故选:A.
【答案点睛】
本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用等比数列的性质求得,进而求得,再利用对数运算求得的值.
【题目详解】
由于,,所以,则,∴,,.
故答案为:
【答案点睛】
本小题主要考查等比数列的性质,考查对数运算,属于基础题.
14、210
【答案解析】
转化,只有中含有,即得解.
【题目详解】
只有中含有,
其中的系数为
故答案为:210
【答案点睛】
本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.
15、
【答案解析】
先推导出函数的周期为,可得出,代值计算,即可求出实数的值.
【题目详解】
由于函数是定义在上的奇函数,则,
又该函数的图象关于直线对称,则,
所以,,则,
所以,函数是周期为的周期函数,
所以,解得.
故答案为:.
【答案点睛】
本题考查利用函数的对称性计