温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
晋城市
介休
一中
高三一诊
考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )
A. B. C.3 D.4
2.下列选项中,说法正确的是( )
A.“”的否定是“”
B.若向量满足 ,则与的夹角为钝角
C.若,则
D.“”是“”的必要条件
3.执行如图所示的程序框图,若输入的,则输出的( )
A.9 B.31 C.15 D.63
4.使得的展开式中含有常数项的最小的n为( )
A. B. C. D.
5.已知不同直线、与不同平面、,且,,则下列说法中正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
6.已知数列为等差数列,为其前 项和,,则( )
A. B. C. D.
7.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是( ).
A. B. C. D.
8.若函数有两个极值点,则实数的取值范围是( )
A. B. C. D.
9.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )
发芽所需天数
1
2
3
4
5
6
7
种子数
4
3
3
5
2
2
1
0
A.2 B.3 C.3.5 D.4
10.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是( )
A. B. C. D.
11.设为锐角,若,则的值为( )
A. B. C. D.
12.设函数,若函数有三个零点,则( )
A.12 B.11 C.6 D.3
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。
14.已知函数的最小值为2,则_________.
15.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.
16.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,,,且满足
(1)求点的轨迹的方程;
(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.
18.(12分)已知数列满足:对任意,都有.
(1)若,求的值;
(2)若是等比数列,求的通项公式;
(3)设,,求证:若成等差数列,则也成等差数列.
19.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数).
(1)求数列,的通项公式;
(2)求数列的前n项和.
20.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.
每台设备一个月中使用的易耗品的件数
6
7
8
型号A
30
30
0
频数
型号B
20
30
10
型号C
0
45
15
将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.
(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;
(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?
21.(12分) “绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.
(1)设事件为 “选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;
(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望
22.(10分)如图,在三棱柱中,平面,,且.
(1)求棱与所成的角的大小;
(2)在棱上确定一点,使二面角的平面角的余弦值为.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.
【题目详解】
根据题意,抛物线的焦点为,
则双曲线的焦点也为,即,
则有,解可得,
双曲线的离心率.
故选:A.
【答案点睛】
本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.
2、D
【答案解析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.
【题目详解】
选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;
选项B若向量满足,则与的夹角为钝角或平角,因此不正确.
选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;
选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.
故选:D.
【答案点睛】
本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.
3、B
【答案解析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.
【题目详解】
执行程序框;;;
;;,
满足,退出循环,因此输出,
故选:B.
【答案点睛】
本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.
4、B
【答案解析】
二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B
【考点定位】本题考查二项式定理的应用.
5、C
【答案解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.
【题目详解】
对于,若,则可能为平行或异面直线,错误;
对于,若,则可能为平行、相交或异面直线,错误;
对于,若,且,由面面垂直的判定定理可知,正确;
对于,若,只有当垂直于的交线时才有,错误.
故选:.
【答案点睛】
本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.
6、B
【答案解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.
【题目详解】
由等差数列的性质可得,
.
故选:B.
【答案点睛】
本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.
7、B
【答案解析】
求出在的解析式,作出函数图象,数形结合即可得到答案.
【题目详解】
当时,,,
,又,所以至少小于7,此时,
令,得,解得或,结合图象,故.
故选:B.
【答案点睛】
本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.
8、A
【答案解析】
试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.
考点:利用导数研究函数极值点
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
9、C
【答案解析】
根据表中数据,即可容易求得中位数.
【题目详解】
由图表可知,种子发芽天数的中位数为,
故选:C.
【答案点睛】
本题考查中位数的计算,属基础题.
10、A
【答案解析】
根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.
【题目详解】
当时,,
当时,,
当时,,
当时,,
若有且仅有3个零点,
则等价为有且仅有3个根,
即与有三个不同的交点,
作出函数和的图象如图,
当a=1时,与有无数多个交点,
当直线经过点时,即,时,与有两个交点,
当直线经过点时,即时,与有三个交点,
要使与有三个不同的交点,则直线处在过和之间,
即,
故选:A.
【答案点睛】
利用函数零点的情况求参数值或取值范围的方法
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
11、D
【答案解析】
用诱导公式和二倍角公式计算.
【题目详解】
.
故选:D.
【答案点睛】
本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.
12、B
【答案解析】
画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.
【题目详解】
作出函数的图象如图所示,
令,
由图可得关于的方程的解有两个或三个(时有三个,时有两个),
所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),
由,可得的值分别为,
则
故选B.
【答案点睛】
本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.
二、填空题:本题共4小题,每小题5分,共20分。
13、或1
【答案解析】
利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值.
【题目详解】
的导数为,
可得切线的斜率为3,切线方程为,
可得,可得切线与轴的交点为,,切线与的交点为,
可得,解得或。
【答案点睛】
本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。
14、
【答案解析】
首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值.
【题目详解】
根据题意可知,
可以发现当或时是分界点,
结合函数的解析式,可以判断0不可能,所以只能是是分界点,
故,解得,故答案是.
【答案点睛】
本题主要考查分段函数的性质,二次函数的性质,函数最值的求解等知识,意在考查学生的转化能力和计算求