温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
东莞
东华
高级中学
2023
学年
高考
冲刺
数学试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( )
A.8 B.9 C.10 D.11
2.已知,函数在区间内没有最值,给出下列四个结论:
①在上单调递增;
②
③在上没有零点;
④在上只有一个零点.
其中所有正确结论的编号是( )
A.②④ B.①③ C.②③ D.①②④
3.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是( )
A. B.
C. D.
4.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为( )
① ② ③ ④ ⑤
A.1个 B.2个 C.3个 D.4个
5.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
A. B. C. D.1
6.已知,复数,,且为实数,则( )
A. B. C.3 D.-3
7.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )
A. B. C. D.
8.已知,则下列说法中正确的是( )
A.是假命题 B.是真命题
C.是真命题 D.是假命题
9.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:
①曲线有四条对称轴;
②曲线上的点到原点的最大距离为;
③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;
④四叶草面积小于.
其中,所有正确结论的序号是( )
A.①② B.①③ C.①③④ D.①②④
10.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )
A.36种 B.44种 C.48种 D.54种
11.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )
A. B. C. D.
12.函数的图象大致为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.
14.函数的图象向右平移个单位后,与函数的图象重合,则_____.
15.设等比数列的前项和为,若,,则__________.
16.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)若在上是减函数,求实数的最大值;
(2)若,求证:.
18.(12分)如图,在四棱柱中,平面平面,是边长为2的等边三角形,,,,点为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
(Ⅲ)在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由.
19.(12分)已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若存在满足不等式,求实数的取值范围.
20.(12分)已知x∈R,设,,记函数.
(1)求函数取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.
21.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.
(1)证明:;
(2)求二面角的余弦值.
22.(10分)已知函数.
(1)讨论的单调性;
(2)若函数在区间上的最小值为,求m的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据题意计算,,,解不等式得到答案.
【题目详解】
∵是以1为首项,2为公差的等差数列,∴.
∵是以1为首项,2为公比的等比数列,∴.
∴
.
∵,∴,解得.则当时,的最大值是9.
故选:.
【答案点睛】
本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.
2、A
【答案解析】
先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.
【题目详解】
因为函数在区间内没有最值.
所以,或
解得或.
又,所以.
令.可得.且在上单调递减.
当时,,且,
所以在上只有一个零点.
所以正确结论的编号②④
故选:A.
【答案点睛】
本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.
3、A
【答案解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.
【题目详解】
由于为上的减函数,则有,可得,
所以当最小时,,
函数恰有两个零点等价于方程有两个实根,
等价于函数与的图像有两个交点.
画出函数的简图如下,而函数恒过定点,
数形结合可得的取值范围为.
故选:A.
【答案点睛】
该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.
4、B
【答案解析】
满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.
【题目详解】
满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);
③不满足(2);④⑤均满足(1)(2).
故选:B.
【答案点睛】
本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.
5、C
【答案解析】
试题分析:设,由题意,显然时不符合题意,故,则
,可得:
,当且仅当时取等号,故选C.
考点:1.抛物线的简单几何性质;2.均值不等式.
【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.
6、B
【答案解析】
把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值.
【题目详解】
因为为实数,所以,解得.
【答案点睛】
本题考查复数的概念,考查运算求解能力.
7、A
【答案解析】
由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为
故答案为A.
点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
8、D
【答案解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.
【题目详解】
当时,故命题为假命题;
记f(x)=ex﹣x的导数为f′(x)=ex,
易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,
∴f(x)>f(0)=1>0,即,故命题为真命题;
∴是假命题
故选D
【答案点睛】
本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.
9、C
【答案解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.
【题目详解】
①:当变为时, 不变,所以四叶草图象关于轴对称;
当变为时,不变,所以四叶草图象关于轴对称;
当变为时,不变,所以四叶草图象关于轴对称;
当变为时,不变,所以四叶草图象关于轴对称;
综上可知:有四条对称轴,故正确;
②:因为,所以,
所以,所以,取等号时,
所以最大距离为,故错误;
③:设任意一点,所以围成的矩形面积为,
因为,所以,所以,
取等号时,所以围成矩形面积的最大值为,故正确;
④:由②可知,所以四叶草包含在圆的内部,
因为圆的面积为:,所以四叶草的面积小于,故正确.
故选:C.
【答案点睛】
本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.
10、B
【答案解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.
【题目详解】
六项不同的任务分别为A、B、C、D、E、F,
如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;
如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;
如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;
所以不同的执行方案共有种.
【答案点睛】
本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.
11、A
【答案解析】
建立平面直角坐标系,求出直线,
设出点,通过,找出与的关系.
通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.
【题目详解】
以D为原点,BC所在直线为轴,AD所在直线为轴建系,
设,则直线 ,
设点,
所以
由得 ,即 ,
所以,
由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.
【答案点睛】
本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.
12、D
【答案解析】
由题可得函数的定义域为,
因为,所以函数为奇函数,排除选项B;
又,,所以排除选项A、C,故选D.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.
【题目详解】
如图:
此四棱锥的高为,底面是长为,宽为2的矩形,
所以体积.
所以本题答案为.
【答案点睛】
本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.
14、
【答案解析】
根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.