分享
内蒙古自治区包头市固阳县第一中学2023学年高考数学押题试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
内蒙古自治区 包头市 固阳县 第一 中学 2023 学年 高考 数学 押题 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知直线是曲线的切线,则( ) A.或1 B.或2 C.或 D.或1 2.若为虚数单位,则复数的共轭复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( ) A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变 B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变 D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 4.已知集合,则( ) A. B. C. D. 5.已知,则的大小关系是( ) A. B. C. D. 6.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为( ) A. B. C. D. 7.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是( ) A. B. C. D. 8.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ). A. B. C. D. 9.点在所在的平面内,,,,,且,则( ) A. B. C. D. 10.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( ) A.2或 B.3或 C.4或 D.5或 11.已知是定义在上的奇函数,且当时,.若,则的解集是( ) A. B. C. D. 12.已知,都是偶函数,且在上单调递增,设函数,若,则( ) A.且 B.且 C.且 D.且 二、填空题:本题共4小题,每小题5分,共20分。 13.双曲线的焦点坐标是_______________,渐近线方程是_______________. 14.在中,,点是边的中点,则__________,________. 15.某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为____分钟. 16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布. (Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率; (Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1); (Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可). 注:若,则,,. 18.(12分)已知函数. (Ⅰ) 求函数的单调区间; (Ⅱ) 当时,求函数在上最小值. 19.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面. (1)证明:平面. (2)三棱锥的体积最大时,求二面角的余弦值. 20.(12分)选修4-5:不等式选讲 已知函数的最大值为3,其中. (1)求的值; (2)若,,,求证: 21.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC. (Ⅰ)求sinB的值; (Ⅱ)求sin(2B+)的值. 22.(10分)设,函数,其中为自然对数的底数. (1)设函数. ①若,试判断函数与的图像在区间上是否有交点; ②求证:对任意的,直线都不是的切线; (2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值. 【题目详解】 直线的斜率为, 对于,令,解得,故切点为,代入直线方程得,解得或1. 故选:D 【答案点睛】 本小题主要考查根据切线方程求参数,属于基础题. 2、B 【答案解析】 由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解 【题目详解】 由题意得, 因为,, 所以在复平面内对应的点位于第二象限. 故选:B 【答案点睛】 本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题. 3、A 【答案解析】 由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论. 【题目详解】 由图可知,, 又,, 又,,, 为了得到这个函数的图象, 只需将的图象上的所有向左平移个长度单位, 得到的图象, 再将的图象上各点的横坐标变为原来的(纵坐标不变)即可. 故选:A 【答案点睛】 本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题. 4、B 【答案解析】 计算,再计算交集得到答案 【题目详解】 ,表示偶数, 故. 故选:. 【答案点睛】 本题考查了集合的交集,意在考查学生的计算能力. 5、B 【答案解析】 利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论. 【题目详解】 依题意,函数与函数关于直线对称,则, 即,又, 所以,. 故选:B. 【答案点睛】 本题主要考查对数、指数的大小比较,属于基础题. 6、D 【答案解析】 由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且, 可知为的三等分点,且, 点在直线上,并且,则,, 设,则, 解得,即, 代入双曲线的方程可得,解得,故选D. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围). 7、A 【答案解析】 由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解. 【题目详解】 如图,连接OP,AM, 由题意得, 点M的轨迹为以A,B为左、右焦点,的双曲线, . 故选:A. 【答案点睛】 本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题. 8、A 【答案解析】 基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率. 【题目详解】 解:从四个阴数和五个阳数中分别随机选取1个数, 基本事件总数, 其和等于11包含的基本事件有:,,,,共4个, 其和等于的概率. 故选:. 【答案点睛】 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题. 9、D 【答案解析】 确定点为外心,代入化简得到,,再根据计算得到答案. 【题目详解】 由可知,点为外心, 则,,又, 所以① 因为,② 联立方程①②可得,,,因为, 所以,即. 故选: 【答案点睛】 本题考查了向量模长的计算,意在考查学生的计算能力. 10、C 【答案解析】 先根据弦长求出直线的斜率,再利用抛物线定义可求出. 【题目详解】 设直线的倾斜角为,则, 所以,,即, 所以直线的方程为.当直线的方程为, 联立,解得和,所以; 同理,当直线的方程为.,综上,或.选C. 【答案点睛】 本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义. 11、B 【答案解析】 利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果. 【题目详解】 为定义在上的奇函数,. 当时,,, 为奇函数,, 由得:或; 综上所述:若,则的解集为. 故选:. 【答案点睛】 本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况. 12、A 【答案解析】 试题分析:由题意得,, ∴,, ∵,∴,∴, ∴若:,,∴, 若:,,∴, 若:,,∴, 综上可知,同理可知,故选A. 考点:1.函数的性质;2.分类讨论的数学思想. 【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 通过双曲线的标准方程,求解,,即可得到所求的结果. 【题目详解】 由双曲线,可得,,则, 所以双曲线的焦点坐标是, 渐近线方程为:. 故答案为:;. 【答案点睛】 本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题. 14、 2 【答案解析】 根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可. 【题目详解】 中,, , 可得 因为点是边的中点, 所以 故答案为:;. 【答案点睛】 本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题. 15、7.5 【答案解析】 分别求出所有人用时总和再除以总人数即可得到平均数. 【题目详解】 故答案为:7.5 【答案点睛】 此题考查求平均数,关键在于准确计算出所有数据之和,易错点在于概念辨析不清导致计算出错. 16、; 【答案解析】 求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可. 【题目详解】 由,得,, ,, ∵, ∴ ,解得. 故答案为:. 【答案点睛】 本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(Ⅰ);(Ⅱ),;(Ⅲ)详见解析. 【答案解析】 (Ⅰ)由题知这只蜻蜓是种还是种的可能性是相

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开