分享
内蒙古包头稀土高新区第二中学2023学年高考适应性考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
内蒙古 包头 稀土 高新区 第二 中学 2023 学年 高考 适应性 考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若复数(是虚数单位),则复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为( ) A. B. C. D. 3.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则( ) A. B. C. D. 4.已知集合,则( ) A. B. C. D. 5.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是 A. B. C. D. 6.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为( ) A. B. C. D. 7.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为( ) A. B. C. D. 8.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是( ) A. B. C. D. 9.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为( ) A.800 B.1000 C.1200 D.1600 10.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A.400米 B.480米 C.520米 D.600米 11.函数图象的大致形状是( ) A. B. C. D. 12.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________. 14.若,则=____, = ___. 15.已知数列满足,,若,则数列的前n项和______. 16.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知,,,. (1)求的值; (2)求的值. 18.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数. 现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据: (1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型; (2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01); (ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元? 附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; ② 参考数据:,,. 19.(12分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表: 考试情况 男学员 女学员 第1次考科目二人数 1200 800 第1次通过科目二人数 960 600 第1次未通过科目二人数 240 200 若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止. (1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率; (2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望. 20.(12分)已知函数. (1)若函数,试讨论的单调性; (2)若,,求的取值范围. 21.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且. (1)证明:平面平面; (2)求直线与平面所成角的正弦值. 22.(10分)已知函数. (1)当时,求函数的图象在处的切线方程; (2)讨论函数的单调性; (3)当时,若方程有两个不相等的实数根,求证:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 将 整理成的形式,得到复数所对应的的点,从而可选出所在象限. 【题目详解】 解:,所以所对应的点为在第一象限. 故选:A. 【答案点睛】 本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算. 2、B 【答案解析】 根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得 k的值,可得要求的双曲线的方程. 【题目详解】 ∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为 故选:B 【答案点睛】 本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题. 3、D 【答案解析】 由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解 【题目详解】 根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以. 故选:D 【答案点睛】 本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养 4、A 【答案解析】 考虑既属于又属于的集合,即得. 【题目详解】 . 故选: 【答案点睛】 本题考查集合的交运算,属于基础题. 5、B 【答案解析】 初始:,,第一次循环:,,继续循环; 第二次循环:,,此时,满足条件,结束循环, 所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B. 6、D 【答案解析】 过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值. 【题目详解】 如下图所示,过点作,设该双曲线的右焦点为,连接. ,. , , ,为的中点,,,, , 由双曲线的定义得,即, 因此,该双曲线的离心率为. 故选:D. 【答案点睛】 本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题. 7、D 【答案解析】 根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积. 【题目详解】 设为中点,是等边三角形, 所以, 又因为,且, 所以平面,则, 由三线合一性质可知 所以三棱锥为正三棱锥, 设底面等边的重心为, 可得,, 所以三棱锥的外接球球心在面下方,设为,如下图所示: 由球的性质可知,平面,且在同一直线上,设球的半径为, 在中,, 即, 解得, 所以三棱锥的外接球表面积为, 故选:D. 【答案点睛】 本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题. 8、B 【答案解析】 构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果. 【题目详解】 构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,,则,当时,单调递增;当时,单调递增.,整理得. 故选:B. 【答案点睛】 本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难. 9、B 【答案解析】 由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数. 【题目详解】 由频率和为1,得,解得, 所以成绩在内的频率, 所以成绩在内的学生人数. 故选:B 【答案点睛】 本题主要考查频率直方图的应用,属基础题. 10、B 【答案解析】 根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度. 【题目详解】 设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示: 由题意可得,解得; 且满足, 故解得塔高米,即塔高约为480米. 故选:B 【答案点睛】 本题考查了对中国文化的理解与简单应用,属于基础题. 11、B

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开