温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
重庆市
万州区
高考
冲刺
数学模拟
试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.要得到函数的图象,只需将函数的图象
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
2.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为( )
A. B. C. D.
3.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( )
A.是偶函数 B.是奇函数
C.是奇函数 D.是奇函数
4.已知集合,则( )
A. B. C. D.
5.若点是角的终边上一点,则( )
A. B. C. D.
6.已知函数,则( )
A.函数在上单调递增 B.函数在上单调递减
C.函数图像关于对称 D.函数图像关于对称
7.设命题函数在上递增,命题在中,,下列为真命题的是( )
A. B. C. D.
8.已知集合,,若AÜB,则实数的取值范围是( )
A. B. C. D.
9.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=( )
A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}
10.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( ).
A. B. C. D.
11.已知函数的定义域为,且,当时,.若,则函数在上的最大值为( )
A.4 B.6 C.3 D.8
12.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )
A.6 海里 B.6海里 C.8海里 D.8海里
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,满足约束条件则的最大值为__________.
14.已知是第二象限角,且,,则____.
15.已知向量满足,且,则 _________.
16.双曲线的焦距为__________,渐近线方程为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程
(1)写出的普通方程和的直角坐标方程;
(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.
18.(12分)已知A是抛物线E:y2=2px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x=1于M,N两点.
(1)若|MN|=2,求抛物线E的方程;
(2)若0<p<1,抛物线E与圆(x﹣5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.
19.(12分)已知函数,.
(1)若不等式对恒成立,求的最小值;
(2)证明:.
(3)设方程的实根为.令若存在,,,使得,证明:.
20.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
21.(12分)已知函数.
(1)时,求不等式解集;
(2)若的解集包含于,求a的取值范围.
22.(10分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:为定值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
先将化为,根据函数图像的平移原则,即可得出结果.
【题目详解】
因为,
所以只需将的图象向右平移个单位.
【答案点睛】
本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.
2、A
【答案解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.
【题目详解】
结合题意,绘制图像
要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.
【答案点睛】
本道题考查了抛物线的基本性质,难度中等.
3、C
【答案解析】
根据函数奇偶性的性质即可得到结论.
【题目详解】
解:是奇函数,是偶函数,
,,
,故函数是奇函数,故错误,
为偶函数,故错误,
是奇函数,故正确.
为偶函数,故错误,
故选:.
【答案点睛】
本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.
4、A
【答案解析】
考虑既属于又属于的集合,即得.
【题目详解】
.
故选:
【答案点睛】
本题考查集合的交运算,属于基础题.
5、A
【答案解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.
【题目详解】
由题意,点是角的终边上一点,
根据三角函数的定义,可得,
则,故选A.
【答案点睛】
本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.
6、C
【答案解析】
依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;
【题目详解】
解:由,
,所以函数图像关于对称,
又,在上不单调.
故正确的只有C,
故选:C
【答案点睛】
本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.
7、C
【答案解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.
【题目详解】
解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.
命题:在中,在上单调递减,所以,是真命题.
则下列命题为真命题的是.
故选:C.
【答案点睛】
本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
8、D
【答案解析】
先化简,再根据,且AÜB求解.
【题目详解】
因为,
又因为,且AÜB,
所以.
故选:D
【答案点睛】
本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.
9、C
【答案解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.
【题目详解】
解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},
B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},
∴A∩B={0,1,2,3},
故选:C.
【答案点睛】
本题主要考查集合的交集运算,属于基础题.
10、C
【答案解析】
由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.
【题目详解】
解:把函数的图象向右平移个单位长度得到函数的图象,
若函数在区间,上单调递增,
在区间,上,,,
则当最大时,,求得,
故选:C.
【答案点睛】
本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.
11、A
【答案解析】
根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.
【题目详解】
函数的定义域为,且,
则;
任取,且,则,
故,
令,,则,
即,
故函数在上单调递增,
故,
令,,
故,
故函数在上的最大值为4.
故选:A.
【答案点睛】
本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.
12、A
【答案解析】
先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.
【题目详解】
由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,
∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.
在△ABC中,由正弦定理得,
即,∴.
故选:A.
【答案点睛】
本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
先画出约束条件的可行域,根据平移法判断出最优点,代入目标函数的解析式,易可得到目标函数的最大值.
【题目详解】
解:由约束条件得如图所示的三角形区域,
由于,则,
要求的最大值,则求的截距的最小值,
显然当平行直线过点时,
取得最大值为:.
故答案为:1.
【答案点睛】
本题考查线性规划求最值问题,我们常用几何法求最值.
14、
【答案解析】
由是第二象限角,且,可得,由及两角和的正切公式可得的值.
【题目详解】
解:由是第二象限角,且,可得,,
由,可得,代入,
可得,
故答案为:.
【答案点睛】
本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.
15、
【答案解析】
由数量积的运算律求得,再由数量积的定义可得结论.
【题目详解】
由题意,
∴,即,∴.
故答案为:.
【答案点睛】
本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键.
16、6
【答案解析】
由题得 所以焦距,故第一个空填6.
由题得渐近线方程为.故第二个空填.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)的普通方程为,的直角坐标方程为. (2)最小值为,此时
【答案解析】
(1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.
(2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.
【题目详解】
(1)由题意知的参数方程为(为参数)
所以的普通方程为.由得,所以的直角坐标方程为.
(2)由题意,可设点的直角坐标为,
因为是直线,所以的最小值即为到的距离,
因为.
当且仅当时,取得最小值为,此时的直角坐标为即.
【答案点睛】
本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用曲线参数方程求解点到直线距离的最小值问题,属于中档题.
18、(1).(2)
【答案解析】
(1)设A的坐标为A(x0,y0),由题意可得圆心C的坐标,求出C到直线x=1的距离.由半个弦长,圆心到直线的距离及半径构成直角三角形可得p的值,进而求出抛物线的方程;
(2)将抛物线的方程与圆的方程联立可得韦达定理,进而求出中点G的坐标,再求出直线OG的斜率的表达式,换元可得斜率的取值范围.
【题目详解】
(1)设A(x0,y0)且y02=2px0,则圆心C(),
圆C的直径|