温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
昆明
实验
中学
2023
学年
高考
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( )
A. B. C. D.
2.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).
A.2寸 B.3寸 C.4寸 D.5寸
3.已知的值域为,当正数a,b满足时,则的最小值为( )
A. B.5 C. D.9
4.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )
A. B. C. D.
5.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为( ).
A. B. C. D.
6.已知向量,,则与的夹角为( )
A. B. C. D.
7.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )
A. B. C. D.
8.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
A. B. C. D.
9.若的展开式中的系数为150,则( )
A.20 B.15 C.10 D.25
10.如图所示,矩形的对角线相交于点,为的中点,若,则等于( ).
A. B. C. D.
11.设命题p:>1,n2>2n,则p为( )
A. B.
C. D.
12.若与互为共轭复数,则( )
A.0 B.3 C.-1 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则__________,__________.
14.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.
15.如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高__________.
16.已知函数,则________;满足的的取值范围为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,其中,为自然对数的底数.
(1)当时,证明:对;
(2)若函数在上存在极值,求实数的取值范围。
18.(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求和的普通方程;
(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.
19.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形, ,.
(Ⅰ)求证:;
(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.
20.(12分)已知函数(),是的导数.
(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;
(2)已知函数在上单调递减,求的取值范围.
21.(12分)已知函数存在一个极大值点和一个极小值点.
(1)求实数a的取值范围;
(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)
22.(10分)已知函数.
(1)若是函数的极值点,求的单调区间;
(2)当时,证明:
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.
【题目详解】
由图象可得,函数的最小正周期为,,
,
则,,取,
,则,
,,可得,
当时,.
故选:B.
【答案点睛】
本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.
2、B
【答案解析】
试题分析:根据题意可得平地降雨量,故选B.
考点:1.实际应用问题;2.圆台的体积.
3、A
【答案解析】
利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.
【题目详解】
解:∵的值域为,
∴,
∴,
∴
,
当且仅当时取等号,
∴的最小值为.
故选:A.
【答案点睛】
本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.
4、D
【答案解析】
设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.
【题目详解】
设双曲线的左焦点为,连接,,,
设,则,,,
,根据对称性知四边形为矩形,
中:,即,解得;
中:,即,故,故.
故选:.
【答案点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.
5、C
【答案解析】
设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.
【题目详解】
根据题意画出图形:
设M,N,P分别为和的中点,
则的夹角为MN和NP夹角或其补角
可知,.
作BC中点Q,则为直角三角形;
中,由余弦定理得
,
在中,
在中,由余弦定理得
所以
故选:C
【答案点睛】
此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.
6、B
【答案解析】
由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.
【题目详解】
解:由题意得,设与的夹角为,
,
由于向量夹角范围为:,
∴.
故选:B.
【答案点睛】
本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.
7、B
【答案解析】
函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.
【题目详解】
由题在上恒成立.即,
的图象永远在的上方,
设与的切点,则,解得,
易知越小,图象越靠上,所以.
故选:B.
【答案点睛】
本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.
8、A
【答案解析】
分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论.
解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为.
图钉落在黄色图形内的概率为.
落在黄色图形内的图钉数大约为.
故选:A.
点睛:应用几何概型求概率的方法
建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.
(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;
(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;
(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.
9、C
【答案解析】
通过二项式展开式的通项分析得到,即得解.
【题目详解】
由已知得,
故当时,,
于是有,
则.
故选:C
【答案点睛】
本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.
10、A
【答案解析】
由平面向量基本定理,化简得,所以,即可求解,得到答案.
【题目详解】
由平面向量基本定理,化简
,所以,即,
故选A.
【答案点睛】
本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.
11、C
【答案解析】
根据命题的否定,可以写出:,所以选C.
12、C
【答案解析】
计算,由共轭复数的概念解得即可.
【题目详解】
,又由共轭复数概念得:,
.
故选:C
【答案点睛】
本题主要考查了复数的运算,共轭复数的概念.
二、填空题:本题共4小题,每小题5分,共20分。
13、2 4
【答案解析】
根据函数为偶函数且,所以的周期为,的实数根是函数和函数的图象的交点的横坐标,在平面直角坐标系中画出函数图象,根据函数的对称性可得所有实数根的和为,从而可得参数的值,最后求出函数的解析式,代入求值即可.
【题目详解】
解:因为为偶函数且,所以的周期为.因为时,,所以可作出在区间上的图象,而方程的实数根是函数和函数的图象的交点的横坐标,结合函数和函数在区间上的简图,可知两个函数的图象在区间上有六个交点.由图象的对称性可知,此六个交点的横坐标之和为,所以,故.
因为,
所以.故.
故答案为:;
【答案点睛】
本题考查函数的奇偶性、周期性、对称性的应用,函数方程思想,数形结合思想,属于难题.
14、
【答案解析】
根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.
【题目详解】
由双曲线C:(,,
可得一条渐近线,一个顶点,
所以,解得,
则,
当且仅当时,取等号,
所以的最小值为.
故答案为:
【答案点睛】
本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.
15、1
【答案解析】
试题分析:在中,,,在中,由正弦定理可得即解得,在中,
.
故答案为1.
考点:正弦定理的应用.
16、
【答案解析】
首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;
【题目详解】
解:因为,
所以,
∵,
∴当时,满足题意,∴;
当时,由,
解得.综合可知:满足的的取值范围为.
故答案为:;.
【答案点睛】
本题考查分段函数的性质的应用,分类讨论思想,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、 (1)见证明;(2)
【答案解析】
(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;
(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,