温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
曲靖市
富源县
2023
学年
高考
仿真
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列与的终边相同的角的表达式中正确的是( )
A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+ (k∈Z)
2.若非零实数、满足,则下列式子一定正确的是( )
A. B.
C. D.
3.已知当,,时,,则以下判断正确的是
A. B.
C. D.与的大小关系不确定
4.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为( )
A. B. C.8 D.6
5.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么( )
A. B. C. D.
6.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )
A. B. C. D.
7.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:
①;
② 直线与直线所成角为;
③ 过,,三点的平面截该正方体所得的截面为六边形;
④ 三棱锥的体积为.
其中,正确命题的个数为( )
A. B. C. D.
8.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
9.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装( )
(附:)
A.个 B.个 C.个 D.个
10.已知函数,若,则a的取值范围为( )
A. B. C. D.
11.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则( )
A.48 B.63 C.99 D.120
12.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为( )
A.800 B.1000 C.1200 D.1600
二、填空题:本题共4小题,每小题5分,共20分。
13.若随机变量的分布列如表所示,则______,______.
-1
0
1
14.已知数列的前项和公式为,则数列的通项公式为___.
15.已知集合,,则_____________.
16.函数满足,当时,,若函数在上有1515个零点,则实数的范围为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:
“小爱同学”智能音箱
“天猫精灵”智能音箱
合计
男
45
60
105
女
55
40
95
合计
100
100
200
(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?
(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?
附:
0.10
0.05
0.025
0.01
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
18.(12分)在中,角的对边分别为,且满足.
(Ⅰ)求角的大小;
(Ⅱ)若的面积为,,求和的值.
19.(12分)已知函数,.
(Ⅰ)判断函数在区间上零点的个数,并证明;
(Ⅱ)函数在区间上的极值点从小到大分别为,,证明:
20.(12分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
21.(12分)如图,在四面体中,.
(1)求证:平面平面;
(2)若,求四面体的体积.
22.(10分)已知各项均不相等的等差数列的前项和为, 且成等比数列.
(1)求数列的通项公式;
(2)求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
利用终边相同的角的公式判断即得正确答案.
【题目详解】
与的终边相同的角可以写成2kπ+ (k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.
故答案为C
【答案点睛】
(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.
2、C
【答案解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.
【题目详解】
令,则,,,,
,因此,.
故选:C.
【答案点睛】
本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.
3、C
【答案解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.
【题目详解】
解:设,
则,
即为增函数,
又,,,,
即,
所以,
所以.
故选:C.
【答案点睛】
本题考查了函数的增减性及导数的应用,属中档题.
4、D
【答案解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.
【题目详解】
如图所示,
作,垂足为,设,由,得,则,.
过点N作,垂足为G,则,,
所以在中,,,所以,
所以,在中,,所以,
所以,,
所以 .解得,
因为,所以为线段的中点,
所以F到l的距离为.
故选:D
【答案点睛】
本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.
5、D
【答案解析】
由得,分别算出和的值,从而得到的值.
【题目详解】
∵,
∴,
∴,
当时,,∴,
当时,,∴,
∴,
故选:D.
【答案点睛】
本小题主要考查对数运算,属于基础题.
6、B
【答案解析】
根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.
【题目详解】
从八卦中任取两卦基本事件的总数种,
这两卦的六根线中恰有四根阴线的基本事件数有6种,
分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),
所以这两卦的六根线中恰有四根阴线的概率是.
故选:B
【答案点睛】
本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.
7、C
【答案解析】
画出几何体的图形,然后转化判断四个命题的真假即可.
【题目详解】
如图;
连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;
直线与直线所成角就是直线与直线所成角为;正确;
过,,三点的平面截该正方体所得的截面为五边形;如图:
是五边形.所以③不正确;
如图:
三棱锥的体积为:
由条件易知F是GM中点,
所以,
而,
.所以三棱锥的体积为,④正确;
故选:.
【答案点睛】
本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.
8、D
【答案解析】
根据面面平行的判定及性质求解即可.
【题目详解】
解:a⊂α,b⊂β,a∥β,b∥α,
由a∥b,不一定有α∥β,α与β可能相交;
反之,由α∥β,可得a∥b或a与b异面,
∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,
则“a∥b“是“α∥β”的既不充分也不必要条件.
故选:D.
【答案点睛】
本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.
9、C
【答案解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.
【题目详解】
由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,
这样,相邻的四个球的球心连线构成棱长为cm的正面体,
易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,
则最上层球面上的点距离桶底最远为cm,
若想要盖上盖子,则需要满足,解得,
所以最多可以装层球,即最多可以装个球.
故选:
【答案点睛】
本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.
10、C
【答案解析】
求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.
【题目详解】
由得,
在时,是增函数,是增函数,是增函数,∴是增函数,
∴由得,解得.
故选:C.
【答案点睛】
本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.
11、C
【答案解析】
观察规律得根号内分母为分子的平方减1,从而求出n.
【题目详解】
解:观察各式发现规律,根号内分母为分子的平方减1
所以
故选:C.
【答案点睛】
本题考查了归纳推理,发现总结各式规律是关键,属于基础题.
12、B
【答案解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.
【题目详解】
由频率和为1,得,解得,
所以成绩在内的频率,
所以成绩在内的学生人数.
故选:B
【答案点睛】
本题主要考查频率直方图的应用,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可.
【题目详解】
由题意可知,解得(舍去)或.
则,
则,
由方差的计算性质得.
【答案点睛】
本题主要考查分布列的性质,均值的计算公