分享
云南省玉溪市元江民族中学2023学年高考数学一模试卷(含解析).doc
下载文档

ID:18761

大小:1.97MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省 玉溪市 民族 中学 2023 学年 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数在上可导且恒成立,则下列不等式中一定成立的是( ) A.、 B.、 C.、 D.、 2.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是( ) A. B. C. D. 3.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则( ) A. B. C. D. 4.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为 A.96 B.84 C.120 D.360 5.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A.甲 B.乙 C.丙 D.丁 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( ) A. B. C. D. 7.设复数z=,则|z|=(  ) A. B. C. D. 8.若数列为等差数列,且满足,为数列的前项和,则( ) A. B. C. D. 9.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( ) A. B. C. D. 10.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( ) A. B. C.2或 D.2或 11.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( ) A. B. C. D. 12.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A.85 B.84 C.57 D.56 二、填空题:本题共4小题,每小题5分,共20分。 13.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号) 因为所以不是函数的周期; 对于定义在上的函数若则函数不是偶函数; “”是“”成立的充分必要条件; 若实数满足则. 14.四面体中,底面,,,则四面体的外接球的表面积为______ 15.已知是同一球面上的四个点,其中平面,是正三角形,,则该球的表面积为______. 16.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数). (1)求直线和曲线的普通方程; (2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)(选修4-4:坐标系与参数方程) 在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为. (1)求曲线的普通方程和直线的直角坐标方程; (2)过点且与直线平行的直线交于,两点,求点到,的距离之积. 18.(12分)在四棱锥中,底面是边长为2的菱形,是的中点. (1)证明:平面; (2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积. 19.(12分)如图,在正四棱锥中,,点、分别在线段、上,. (1)若,求证:⊥; (2)若二面角的大小为,求线段的长. 20.(12分)如图,设A是由个实数组成的n行n列的数表,其中aij (i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri (A)为A的第i行各数之积,cj (A)为A的第j列各数之积.令 a11 a12 … a1n a21 a22 a2n … … … … an1 an2 … ann (Ⅰ)请写出一个AS(4,4),使得l(A)=0; (Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由; (Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合. 21.(12分)已知,,为正数,且,证明: (1); (2). 22.(10分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求曲线的普通方程和曲线的直角坐标方程; (2)若曲线、交于、两点,是曲线上的动点,求面积的最大值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 设,利用导数和题设条件,得到,得出函数在R上单调递增, 得到,进而变形即可求解. 【题目详解】 由题意,设,则, 又由,所以,即函数在R上单调递增, 则,即, 变形可得. 故选:A. 【答案点睛】 本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题. 2、D 【答案解析】 由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解. 【题目详解】 由题意知,函数的最小正周期为,即, 由函数的图象平移变换公式可得, 将函数的图象向右平移个周期后的解析式为 , 因为函数的图象关于轴对称, 所以,即, 所以当时,有最小正值为. 故选:D 【答案点睛】 本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型. 3、D 【答案解析】 由半圆面积之比,可求出两个直角边 的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出. 【题目详解】 解:由题意知 ,以 为直径的半圆面积, 以 为直径的半圆面积,则,即. 由 ,得 ,所以. 故选:D. 【答案点睛】 本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值. 4、B 【答案解析】 2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B. 5、A 【答案解析】 可采用假设法进行讨论推理,即可得到结论. 【题目详解】 由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【答案点睛】 本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题. 6、D 【答案解析】 试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D. 考点:本题主要考查三视图及几何体体积的计算. 7、D 【答案解析】 先用复数的除法运算将复数化简,然后用模长公式求模长. 【题目详解】 解:z====﹣﹣, 则|z|====. 故选:D. 【答案点睛】 本题考查复数的基本概念和基本运算,属于基础题. 8、B 【答案解析】 利用等差数列性质,若,则 求出,再利用等差数列前项和公式得 【题目详解】 解:因为 ,由等差数列性质,若,则得, . 为数列的前项和,则. 故选:. 【答案点睛】 本题考查等差数列性质与等差数列前项和. (1)如果为等差数列,若,则 . (2)要注意等差数列前项和公式的灵活应用,如. 9、D 【答案解析】 由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率. 【题目详解】 双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2, 设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2① 由,得 ∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立, ∴y1+y2=②,y1y2=③, 联立①②得,联立①③得, ,即:,,解得:,直线的斜率为, 故选D. 【答案点睛】 本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题. 10、C 【答案解析】 由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果. 【题目详解】 由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或. 故选:C 【答案点睛】 本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想. 11、B 【答案解析】 令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决. 【题目详解】 令,则,如图 与顶多只有3个不同交点,要使关于的方程有 六个不相等的实数根,则有两个不同的根, 设由根的分布可知, ,解得. 故选:B. 【答案点睛】 本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题. 12、A 【答案解析】 先求,再确定展开式中的有理项,最后求系数之和. 【题目详解】 解:的展开式中二项式系数和为256 故, 要求展开式中的有理项,则 则二项式展开式中有理项系数之和为: 故选:A 【答案点睛】 考查二项式的二项式系数及展开式中有理项系数的确定,基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 对①,根据周期的定义判定即可. 对②,根据偶函数满足的性质判定即可. 对③,举出反例判定即可. 对④,求解不等式再判定即可. 【题目详解】 解:因为当时, 所以由周期函数的定义知不是函数的周期, 故正确; 对于定义在上的函数, 若,由偶函数的定义知函数不是偶函数, 故正确; 当时不满足 则“”不是“”成立的充分不必要条件, 故错误; 若实数满足 则 所以成立, 故正确. 正确命题的序号是. 故答案为:. 【答案点睛】 本题主要考查了命题真假的判定,属于基础题. 14、 【答案解析】 由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求. 【题目详解】 解:如图,在四面体中,底面,,, 可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,, 则长方体的对角线长为,则三棱锥的外

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开