温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
曲靖市
宣威市
2023
学年
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )
A. B. C. D.
2.在中,内角所对的边分别为,若依次成等差数列,则( )
A.依次成等差数列 B.依次成等差数列
C.依次成等差数列 D.依次成等差数列
3.是虚数单位,则( )
A.1 B.2 C. D.
4.已知函数,,当时,不等式恒成立,则实数a的取值范围为( )
A. B. C. D.
5.甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )
A. B. C. D.
6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有
A.72种 B.36种 C.24种 D.18种
7.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为
A. B.
C.2 D.
8.关于的不等式的解集是,则关于的不等式的解集是( )
A. B.
C. D.
9.设函数,则,的大致图象大致是的( )
A. B.
C. D.
10.展开项中的常数项为
A.1 B.11 C.-19 D.51
11.函数(, , )的部分图象如图所示,则的值分别为( )
A.2,0 B.2, C.2, D.2,
12.下列判断错误的是( )
A.若随机变量服从正态分布,则
B.已知直线平面,直线平面,则“”是“”的充分不必要条件
C.若随机变量服从二项分布: , 则
D.是的充分不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.若在上单调递减,则的取值范围是_______
14.若且时,不等式恒成立,则实数a的取值范围为________.
15.已知数列为正项等比数列,,则的最小值为________.
16.若变量,满足约束条件则的最大值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知正实数满足 .
(1)求 的最小值.
(2)证明:
18.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.
(1)求证:平面;
(2)若,求直线与平面所成角的正弦值.
19.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.
(1)求的值;
(2)若的面积为求的值.
20.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.
21.(12分)已知函数.
(Ⅰ)求的值;
(Ⅱ)若,且,求的值.
22.(10分)已知函数 ,
(1)求函数的单调区间;
(2)当时,判断函数,()有几个零点,并证明你的结论;
(3)设函数,若函数在为增函数,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.
【题目详解】
将函数的图象向左平移个单位长度可得函数的图象,
由于函数的图象关于直线对称,则函数的图象关于轴对称,
即函数为偶函数,由,得,
函数在区间上单调递增,则,得,解得.
因此,实数的取值范围是.
故选:C.
【答案点睛】
本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.
2、C
【答案解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.
【题目详解】
依次成等差数列,,
正弦定理得,
由余弦定理得 ,,即依次成等差数列,故选C.
【答案点睛】
本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
3、C
【答案解析】
由复数除法的运算法则求出,再由模长公式,即可求解.
【题目详解】
由.
故选:C.
【答案点睛】
本题考查复数的除法和模,属于基础题.
4、D
【答案解析】
由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.
【题目详解】
,即函数在时是单调增函数.
则恒成立.
.
令,则
时,单调递减,时单调递增.
故选:D.
【答案点睛】
本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.
5、A
【答案解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.
6、B
【答案解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.
【题目详解】
2名内科医生,每个村一名,有2种方法,
3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,
若甲村有1外科,2名护士,则有,其余的分到乙村,
若甲村有2外科,1名护士,则有,其余的分到乙村,
则总共的分配方案为2×(9+9)=2×18=36种,
故选:B.
【答案点睛】
本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.
7、A
【答案解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.
【题目详解】
设与轴交于点,由对称性可知轴,
又,为以为直径的圆的半径,
为圆心.
,又点在圆上,
,即.
,故选A.
【答案点睛】
本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.
8、A
【答案解析】
由的解集,可知及,进而可求出方程的解,从而可求出的解集.
【题目详解】
由的解集为,可知且,
令,解得,,
因为,所以的解集为,
故选:A.
【答案点睛】
本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.
9、B
【答案解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.
【题目详解】
对于选项A:由题意知,函数的定义域为,其关于原点对称,
因为,
所以函数为奇函数,其图象关于原点对称,故选A排除;
对于选项D:因为,故选项D排除;
对于选项C:因为,故选项C排除;
故选:B
【答案点睛】
本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.
10、B
【答案解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.
【题目详解】
展开式中的项为常数项,有3种情况:
(1)5个括号都出1,即;
(2)两个括号出,两个括号出,一个括号出1,即;
(3)一个括号出,一个括号出,三个括号出1,即;
所以展开项中的常数项为,故选B.
【答案点睛】
本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.
11、D
【答案解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案
【题目详解】
由函数图象可知:
,
函数的图象过点
,
,则
故选
【答案点睛】
本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果
12、D
【答案解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.
【题目详解】
对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;
对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;
对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;
对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.
因而是的既不充分也不必要条件,故选项不正确,符合题意.
故选:D
【答案点睛】
本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题意可得导数在恒成立,解出即可.
【题目详解】
解:由题意,,
当时,显然,符合题意;
当时,在恒成立,
∴,
∴,
故答案为:.
【答案点睛】
本题主要考查利用导数研究函数的单调性,属于中档题.
14、
【答案解析】
将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.
【题目详解】
因为,所以,所以,
所以,所以或,
当时,对且不成立,
当时,取,显然不满足,所以,
所以,解得;
当时,取,显然不满足,所以,
所以,解得,
综上可得的取值范围是:.
故答案为:.
【答案点睛】
本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.
15、27
【答案解析】
利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.
【题目详解】
由等比数列的性质可知,则,
.
当且仅当时取得最小值.
故答案为:.
【答案点睛】
本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.
16、7
【答案解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.
【题目详解】
作出不等式组所表示的平面区域,如下图阴影部分所示.
观察可知,当直线过点时,有最大值,.
故答案为:.
【答案点睛】
本题考查二次不等式组与平面区域、线性规划,主