温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
重庆市
江津
第六
中学
高考
数学
模拟
密押卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为( )m.
A.1 B. C. D.2
2.已知,则的大小关系是( )
A. B. C. D.
3.△ABC中,AB=3,,AC=4,则△ABC的面积是( )
A. B. C.3 D.
4.已知,若则实数的取值范围是( )
A. B. C. D.
5.在的展开式中,含的项的系数是( )
A.74 B.121 C. D.
6.已知直线是曲线的切线,则( )
A.或1 B.或2 C.或 D.或1
7.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是
A. B. C. D.
8.给出以下四个命题:
①依次首尾相接的四条线段必共面;
②过不在同一条直线上的三点,有且只有一个平面;
③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;
④垂直于同一直线的两条直线必平行.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
9.已知函数的定义域为,则函数的定义域为( )
A. B.
C. D.
10.若的展开式中的系数为-45,则实数的值为( )
A. B.2 C. D.
11.设a,b,c为正数,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不修要条件
12.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是( )
A.1 B.2 C.3 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,,点是边的中点,则__________,________.
14.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.
15.已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为________________.
16.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知.
(Ⅰ) 若,求不等式的解集;
(Ⅱ),,,求实数的取值范围.
18.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.
(1)求证:直线MN⊥平面ACB1;
(2)求点C1到平面B1MC的距离.
19.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.
(Ⅰ)求证:;
(Ⅱ)求证:四边形是平行四边形;
(Ⅲ)若,试判断二面角的大小能否为?说明理由.
20.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
21.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:
等级
不合格
合格
得分
频数
6
24
(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?
是否合格
性别
不合格
合格
总计
男生
女生
总计
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;
(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
附表及公式:,其中.
22.(10分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是.称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题:
(1)如果植物的上一代父系、母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少?
(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,.求杂交所得子代的三种遗传性状,(或),所占的比例.
(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为.设第代遗传因子和的频率分别为和,已知有以下公式.证明是等差数列.
(4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解
【题目详解】
由题中图像可得,
由变速直线运动的路程公式,可得
.
所以物体在间的运动路程是.
故选:C
【答案点睛】
本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.
2、B
【答案解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.
【题目详解】
依题意,函数与函数关于直线对称,则,
即,又,
所以,.
故选:B.
【答案点睛】
本题主要考查对数、指数的大小比较,属于基础题.
3、A
【答案解析】
由余弦定理求出角,再由三角形面积公式计算即可.
【题目详解】
由余弦定理得:,
又,所以得,
故△ABC的面积.
故选:A
【答案点睛】
本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.
4、C
【答案解析】
根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,
【题目详解】
因为,
所以有解,
即有解,
所以,得,,
所以,
又因为,
所以,
即,
可化为,
因为,
所以的解集包含,
所以或,
解得,
故选:C
【答案点睛】
本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,
5、D
【答案解析】
根据,利用通项公式得到含的项为:,进而得到其系数,
【题目详解】
因为在,
所以含的项为:,
所以含的项的系数是的系数是,
,
故选:D
【答案点睛】
本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,
6、D
【答案解析】
求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.
【题目详解】
直线的斜率为,
对于,令,解得,故切点为,代入直线方程得,解得或1.
故选:D
【答案点睛】
本小题主要考查根据切线方程求参数,属于基础题.
7、B
【答案解析】
该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面半径为2,则其体积为,
.
故选B
点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
8、B
【答案解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.
【题目详解】
①中,空间四边形的四条线段不共面,故①错误.
②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.
③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么
这两个角相等或互补,故③错误.
④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.
故选:B
【答案点睛】
本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.
9、A
【答案解析】
试题分析:由题意,得,解得,故选A.
考点:函数的定义域.
10、D
【答案解析】
将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.
【题目详解】
∵
所以展开式中的系数为,
∴解得.
故选:D.
【答案点睛】
本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.
11、B
【答案解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
解:,,为正数,
当,,时,满足,但不成立,即充分性不成立,
若,则,即,
即,即,成立,即必要性成立,
则“”是“”的必要不充分条件,
故选:.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.
12、C
【答案解析】
设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.
【题目详解】
根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,
设直线AB的方程为,代入得:.
由根与系数的关系得,,
所以.
又直线CD的方程为,同理,
所以,
所以.故.过点P作PM垂直于准线,M为垂足,
则由抛物线的定义可得.
所以,当Q,P,M三点共线时,等号成立.
故选:C.
【答案点睛】
本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.
二、填空题:本题共