分享
2023届江苏省苏州市星海中学高考考前模拟数学试题(含解析).doc
下载文档

ID:18659

大小:2.11MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 江苏省 苏州市 中学 高考 考前 模拟 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设,满足约束条件,若的最大值为,则的展开式中项的系数为( ) A.60 B.80 C.90 D.120 2.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有(  ) A.8种 B.12种 C.16种 D.20种 3.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( ) A. B. C. D. 4.已知某几何体的三视图如右图所示,则该几何体的体积为( ) A.3 B. C. D. 5.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( ) A.月收入的极差为60 B.7月份的利润最大 C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元 6.若为纯虚数,则z=( ) A. B.6i C. D.20 7.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为 A.2 B.3 C. D. 8.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,( ) A. B. C. D. 9.设a,b都是不等于1的正数,则“”是“”的(  ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 10.在等差数列中,,,若(),则数列的最大值是( ) A. B. C.1 D.3 11.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( ) A. B. C. D. 12.已知向量,若,则实数的值为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知,且,则__________. 14.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________. 15.在的展开式中,的系数等于__. 16.若实数满足约束条件,设的最大值与最小值分别为,则_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性; (Ⅱ)证明:当x>1时,g(x)>0; (Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立. 18.(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形. (1)求椭圆的方程; (2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、.试判断是否为定值,并说明理由. 19.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足. (1)求数列、的通项公式; (2)令,证明:. 20.(12分)已知函数. (1)若函数的图象与轴有且只有一个公共点,求实数的取值范围; (2)若对任意成立,求实数的取值范围. 21.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用 (1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望; (2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据: x 10 15 20 25 30 35 40 y 10000 11761 13010 13980 14771 15440 16020 2.99 3.49 4.05 4.50 4.99 5.49 5.99 ①用最小二乘法求与的回归直线方程; ②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值 参考数据和公式:, 22.(10分)已知,且满足,证明:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案. 【题目详解】 如图所示:画出可行域和目标函数, ,即,故表示直线与截距的倍, 根据图像知:当时,的最大值为,故. 展开式的通项为:, 取得到项的系数为:. 故选:. 【答案点睛】 本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力. 2、C 【答案解析】 分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果. 【题目详解】 若一名学生只选物理和历史中的一门,则有种组合; 若一名学生物理和历史都选,则有种组合; 因此共有种组合. 故选C 【答案点睛】 本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型. 3、D 【答案解析】 求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率. 【题目详解】 由题意可得、. 由,得,则,即. 而,所以,所以点. 因为点在椭圆上,则, 整理可得,所以,所以. 即椭圆的离心率为 故选:D. 【答案点睛】 本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题. 4、B 【答案解析】 由三视图知:几何体是直三棱柱消去一个三棱锥,如图: 直三棱柱的体积为,消去的三棱锥的体积为, ∴几何体的体积,故选B. 点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积. 5、D 【答案解析】 直接根据折线图依次判断每个选项得到答案. 【题目详解】 由图可知月收入的极差为,故选项A正确; 1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确; 易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误. 故选:. 【答案点睛】 本题考查了折线图,意在考查学生的理解能力和应用能力. 6、C 【答案解析】 根据复数的乘法运算以及纯虚数的概念,可得结果. 【题目详解】 ∵为纯虚数, ∴且 得,此时 故选:C. 【答案点睛】 本题考查复数的概念与运算,属基础题. 7、D 【答案解析】 本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。 【题目详解】 根据题意可画出以上图像,过点作垂线并交于点, 因为,在双曲线上, 所以根据双曲线性质可知,,即,, 因为圆的半径为,是圆的半径,所以, 因为,,,, 所以,三角形是直角三角形, 因为,所以,,即点纵坐标为, 将点纵坐标带入圆的方程中可得,解得,, 将点坐标带入双曲线中可得, 化简得,,,,故选D。 【答案点睛】 本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。 8、C 【答案解析】 判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得. 【题目详解】 如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,∴, 设,则,,∴,. 故选:C. 【答案点睛】 本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角. 9、C 【答案解析】 根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可. 【题目详解】 由“”,得, 得或或, 即或或, 由,得, 故“”是“”的必要不充分条件, 故选C. 【答案点睛】 本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题. 10、D 【答案解析】 在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时, 取最大即可求得结果. 【题目详解】 因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3. 故选:D. 【答案点睛】 本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易. 11、C 【答案解析】 先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围. 【题目详解】 双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率. 故选:C 【答案点睛】 本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题. 12、D 【答案解析】 由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值. 【题目详解】 解:,,即, 将和代入,得出,所以. 故选:D. 【答案点睛】 本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 试题分析:因,故,所以,,应填. 考点:三角变换及运用. 14、 【答案解析】 根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可. 【题目详解】 解:由,其中,, 可得,则,令,, 可得.① 又令数列中的,,, 根据等差数列的性质,可得, 所以.② 根据①②得出,. 所以. 故答案为. 【答案点睛】 本题主要考查等差数列、等比数列的性质,属于基础题. 15、7 【答案解析】 由题,得,令,即可得到本题答案. 【题目详解】 由题,得, 令,得x的系数. 故答案为:7 【答案点睛】 本题主要考查二项式定理的应用,属基础题. 16、 【答案解析】 画出可行

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开