温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山西省
朔州
一中
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( )
A.国防大学,研究生 B.国防大学,博士
C.军事科学院,学士 D.国防科技大学,研究生
2.已知集合,,则( )
A. B.
C.或 D.
3.若平面向量,满足,则的最大值为( )
A. B. C. D.
4.若,则函数在区间内单调递增的概率是( )
A. B. C. D.
5.已知平面和直线a,b,则下列命题正确的是( )
A.若∥,b∥,则∥ B.若,,则∥
C.若∥,,则 D.若,b∥,则
6.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )
A. B. C. D.
7.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为( )
A. B. C. D.
8.已知关于的方程在区间上有两个根,,且,则实数的取值范围是( )
A. B. C. D.
9.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入
A. B.
C. D.
10.已知定义在上的函数的周期为4,当时,,则( )
A. B. C. D.
11.已知中内角所对应的边依次为,若,则的面积为( )
A. B. C. D.
12.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数在区间(-∞,1)上递增,则实数a的取值范围是____
14.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.
15.在的展开式中,的系数为______用数字作答
16.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.
(1)求物理原始成绩在区间的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望.
(附:若随机变量,则,,)
18.(12分)设函数.
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围.
19.(12分)的内角的对边分别为,已知.
(1)求的大小;
(2)若,求面积的最大值.
20.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.
(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;
(2)若点,为曲线上两动点,且满足,求面积的最大值.
21.(12分)在中,内角的对边分别为,且
(1)求;
(2)若,且面积的最大值为,求周长的取值范围.
22.(10分)已知,且.
(1)请给出的一组值,使得成立;
(2)证明不等式恒成立.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.
【题目详解】
由题意①甲不是军事科学院的,③乙不是军事科学院的;
则丙来自军事科学院;
由②来自军事科学院的不是博士,则丙不是博士;
由⑤国防科技大学的是研究生,可知丙不是研究生,
故丙为学士.
综上可知,丙来自军事科学院,学位是学士.
故选:C.
【答案点睛】
本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.
2、D
【答案解析】
首先求出集合,再根据补集的定义计算可得;
【题目详解】
解:∵,解得
∴,∴.
故选:D
【答案点睛】
本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.
3、C
【答案解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.
【题目详解】
由题意可得:
,
,
,
故选:C
【答案点睛】
本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.
4、B
【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.
5、C
【答案解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.
【题目详解】
A:当时,也可以满足∥,b∥,故本命题不正确;
B:当时,也可以满足,,故本命题不正确;
C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;
D:当时,也可以满足,b∥,故本命题不正确.
故选:C
【答案点睛】
本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.
6、D
【答案解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,
设,得,求出的值,即得解.
【题目详解】
设双曲线C的左焦点为,连接,
由对称性可知四边形是平行四边形,
所以,.
设,则,
又.故,
所以.
故选:D
【答案点睛】
本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.
7、C
【答案解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.
【题目详解】
设分别是的中点
平面
是等边三角形
又
平面 为与平面所成的角
是边长为的等边三角形
,且为所在截面圆的圆心
球的表面积为 球的半径
平面
本题正确选项:
【答案点睛】
本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.
8、C
【答案解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.
【题目详解】
由题化简得,,
作出的图象,
又由易知.
故选:C.
【答案点睛】
本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.
9、C
【答案解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.
10、A
【答案解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.
【题目详解】
定义在上的函数的周期为4
,
当时,,
,,
.
故选:A.
【答案点睛】
本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.
11、A
【答案解析】
由余弦定理可得,结合可得a,b,再利用面积公式计算即可.
【题目详解】
由余弦定理,得,由,解得,
所以,.
故选:A.
【答案点睛】
本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.
12、D
【答案解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.
【题目详解】
因为是定义在上的增函数,故.
又有意义,故,故,所以.
令,则,
故在上为增函数,所以即,
整理得到.
故选:D.
【答案点睛】
本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.
【题目详解】
由二次函数的性质和复合函数的单调性可得
解得.
故答案为:
【答案点睛】
本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.
14、
【答案解析】
根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.
【题目详解】
根据题意画出几何图形,以为原点建立空间直角坐标系:
设正方体的棱长为1,则
所以
所以,
所以异面直线与所成角的余弦值为,
故答案为:.
【答案点睛】
本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.
15、1
【答案解析】
利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数.
【题目详解】
二项展开式的通项为
令得的系数为
故答案为1.
【答案点睛】
利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.
16、
【答案解析】
总事件数为,
目标事件:当第一颗骰子为1,2,4,6,具体事件有
,共8种;
当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;
所以目标事件共20中,所以。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)1636人;(Ⅱ)见解析.
【答案解析】
(Ⅰ)根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;(Ⅱ)由题意得成绩在区间[61,80]的概率为,且,由此可得的分布列和数学期望.
【题目详解】
(Ⅰ)因为物理原始成绩,
所以
.
所以物理原始