温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
怒江
重点中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图后,输出的值为5,则的取值范围是( ).
A. B. C. D.
2.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
3.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
4.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )
A. B. C. D.
5.函数与的图象上存在关于直线对称的点,则的取值范围是( )
A. B. C. D.
6.定义在上的函数满足,且为奇函数,则的图象可能是( )
A. B. C. D.
7.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgn x B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]
8.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )
A. B. C. D.2
9.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
10.已知实数,满足约束条件,则目标函数的最小值为
A. B.
C. D.
11.已知向量,则是的( )
A.充分不必要条件 B.必要不充分条件
C.既不充分也不必要条件 D.充要条件
12.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在处的切线的斜率为________.
14.集合,,则_____.
15.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.
16.命题“”的否定是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在三棱柱中,平面,,且.
(1)求棱与所成的角的大小;
(2)在棱上确定一点,使二面角的平面角的余弦值为.
18.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.
(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;
(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.
附:若随机变量服从正态分布,则.
19.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.
20.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.
(Ⅰ)证明:平面;
(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.
21.(12分)已知函数
(1)若恒成立,求实数的取值范围;
(2)若方程有两个不同实根,,证明:.
22.(10分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.
【题目详解】
第一次循环:;第二次循环:;
第三次循环:;第四次循环:;
此时满足输出结果,故.
故选:C.
【答案点睛】
本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.
2、C
【答案解析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;
【题目详解】
解:由已知得,是的一条对称轴,且使取得最值,则,,,,
故选:C.
【答案点睛】
本题考查三角函数的性质以及三角函数的变换规则,属于基础题.
3、A
【答案解析】
分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
4、C
【答案解析】
根据三视图还原为几何体,结合组合体的结构特征求解表面积.
【题目详解】
由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.
【答案点睛】
本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.
5、C
【答案解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.
【题目详解】
解:由题可知,曲线与有公共点,即方程有解,
即有解,令,则,
则当时,;当时,,
故时,取得极大值,也即为最大值,
当趋近于时,趋近于,所以满足条件.
故选:C.
【答案点睛】
本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.
6、D
【答案解析】
根据为奇函数,得到函数关于中心对称,排除,计算排除,得到答案.
【题目详解】
为奇函数,即,函数关于中心对称,排除.
,排除.
故选:.
【答案点睛】
本题考查了函数图像的识别,确定函数关于中心对称是解题的关键.
7、A
【答案解析】
根据符号函数的解析式,结合f(x)的单调性分析即可得解.
【题目详解】
根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,
当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g ( x)]=1,
当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g ( x)]=0,
当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g ( x)]=﹣1,
综合有:sgn[g ( x)]=sgn(x);
故选:A.
【答案点睛】
此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.
8、B
【答案解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.
【题目详解】
解:,
一条渐近线
,
故选:B
【答案点睛】
利用的关系求双曲线的离心率,是基础题.
9、A
【答案解析】
试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.
解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,
则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,
∴“α∥β是“l∥β”的充分不必要条件.
故选A.
考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.
10、B
【答案解析】
作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.
【题目详解】
解:作出不等式组对应的平面区域如图:
目标函数的几何意义为动点到定点的斜率,
当位于时,此时的斜率最小,此时.
故选B.
【答案点睛】
本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.
11、A
【答案解析】
向量,,,则,即,或者-1,判断出即可.
【题目详解】
解:向量,,
,则,即,
或者-1,
所以是或者的充分不必要条件,
故选:A.
【答案点睛】
本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.
12、A
【答案解析】
设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积.
【题目详解】
如图,设三棱柱为,且,高.
所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,
则圆的半径为.
设球心为,则由球的几何知识得为直角三角形,且,
所以,
即球的半径为,
所以球的体积为.
故选A.
【答案点睛】
本题考查与球有关的组合体的问题,解答本题的关键有两个:
(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.
(2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
求出函数的导数,利用导数的几何意义令,即可求出切线斜率.
【题目详解】
,
,
,
即曲线在处的切线的斜率.
故答案为:
【答案点睛】
本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.
14、
【答案解析】
分析出集合A为奇数构成的集合,即可求得交集.
【题目详解】
因为表示为奇数,故.
故答案为:
【答案点睛】
此题考查求集合的交集,根据已知集合求解,属于简单题.
15、
【答案解析】
对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论.
【题目详解】
依题意,名学生分成组,则一定是个人组和个人组.
①若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;
②若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长