温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
重庆市
铁路
中学
高考
数学
模拟
密押卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知角的终边经过点,则的值是
A.1或 B.或 C.1或 D.或
2.( )
A. B. C. D.
3.已知全集为,集合,则( )
A. B. C. D.
4.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为( )
A. B.
C.() D.()
5.已知平面向量,满足,,且,则( )
A.3 B. C. D.5
6.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).
A. B. C. D.
7.已知函数()的最小值为0,则( )
A. B. C. D.
8.已知集合,,若,则( )
A.4 B.-4 C.8 D.-8
9.已知等边△ABC内接于圆:x2+ y2=1,且P是圆τ上一点,则的最大值是( )
A. B.1 C. D.2
10.设a,b,c为正数,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不修要条件
11.已知,,,则( )
A. B.
C. D.
12.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( )
A.3 B.3.4 C.3.8 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.
14.在的二项展开式中,所有项的系数的和为________
15.3张奖券分别标有特等奖、一等奖和二等奖.甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是__________.
16.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.
(1)求数列{an}的通项an;
(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.
18.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:
年份
2011
2012
2013
2014
2015
2016
2017
2018
年生产台数(万台)
2
3
4
5
6
7
10
11
该产品的年利润(百万元)
2.1
2.75
3.5
3.25
3
4.9
6
6.5
年返修台数(台)
21
22
28
65
80
65
84
88
部分计算结果:,,,
,
注:年返修率=
(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, ,.
19.(12分)已知数列满足,且.
(1)求证:数列是等差数列,并求出数列的通项公式;
(2)求数列的前项和.
20.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:
优秀
合格
总计
男生
6
女生
18
合计
60
已知在该班随机抽取1人测评结果为优秀的概率为.
(1)完成上面的列联表;
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.
附:
0.25
0.10
0.025
1.323
2.706
5.024
21.(12分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.
(1)求cosC的值;
(2)若a=3,c,求△ABC的面积.
22.(10分)已知是圆:的直径,动圆过,两点,且与直线相切.
(1)若直线的方程为,求的方程;
(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据三角函数的定义求得后可得结论.
【题目详解】
由题意得点与原点间的距离.
①当时,,
∴,
∴.
②当时,,
∴,
∴.
综上可得的值是或.
故选B.
【答案点睛】
利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.
2、A
【答案解析】
分子分母同乘,即根据复数的除法法则求解即可.
【题目详解】
解:,
故选:A
【答案点睛】
本题考查复数的除法运算,属于基础题.
3、D
【答案解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,
再由交集的定义求解即可.
【题目详解】
,
,.
故选:D
【答案点睛】
本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.
4、B
【答案解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.
【题目详解】
如图所示:连接,根据垂直平分线知,
故,故轨迹为双曲线,
,,,故,故轨迹方程为.
故选:.
【答案点睛】
本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.
5、B
【答案解析】
先求出,再利用求出,再求.
【题目详解】
解:
由,所以
,
,,
故选:B
【答案点睛】
考查向量的数量积及向量模的运算,是基础题.
6、A
【答案解析】
作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.
【题目详解】
根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,
平面,且,
∴,,,,
∴这个四棱锥中最长棱的长度是.
故选.
【答案点睛】
本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.
7、C
【答案解析】
设,计算可得,再结合图像即可求出答案.
【题目详解】
设,则,
则,
由于函数的最小值为0,作出函数的大致图像,
结合图像,,得,
所以.
故选:C
【答案点睛】
本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.
8、B
【答案解析】
根据交集的定义,,可知,代入计算即可求出.
【题目详解】
由,可知,
又因为,
所以时,,
解得.
故选:B.
【答案点睛】
本题考查交集的概念,属于基础题.
9、D
【答案解析】
如图所示建立直角坐标系,设,则,计算得到答案.
【题目详解】
如图所示建立直角坐标系,则,,,设,
则
.
当,即时等号成立.
故选:.
【答案点睛】
本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.
10、B
【答案解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
解:,,为正数,
当,,时,满足,但不成立,即充分性不成立,
若,则,即,
即,即,成立,即必要性成立,
则“”是“”的必要不充分条件,
故选:.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.
11、C
【答案解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.
【题目详解】
,
所以,即.
故选:C.
【答案点睛】
本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.
12、D
【答案解析】
根据三视图即可求得几何体表面积,即可解得未知数.
【题目详解】
由图可知,该几何体是由一个长宽高分别为和
一个底面半径为,高为的圆柱组合而成.
该几何体的表面积为
,
解得,
故选:D.
【答案点睛】
本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、4
【答案解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.
【题目详解】
设等差数列的公差为,
由题意得: ,则整理得,,所以
故答案为:4
【答案点睛】
此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.
14、1
【答案解析】
设,令,的值即为所有项的系数之和。
【题目详解】
设,令,
所有项的系数的和为。
【答案点睛】
本题主要考查二项式展开式所有项的系数的和的求法─赋值法。一般地,
对于 ,展开式各项系数之和为,注意与“二项式系数之和”区分。
15、
【答案解析】
利用排列组合公式进行计算,再利用古典概型公式求出不是特等奖的两张的概率即可.
【题目详解】
解:3张奖券分别标有特等奖、一等奖和二等奖,
甲、乙两人同时各抽取1张奖券,
则两人同时抽取两张共有: 种排法
排除特等奖外两人选两张共有:种排法.
故两人都未抽得特等奖的概率是:
故答案为:
【答案点睛】
本题主要考查古典概型的概率公式的应用,是基础题.
16、
【答案解析】
根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.
【题目详解】
∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①
又∵,tan∠PF2F1=﹣2,
∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,
△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②
①②联解,得,可得,
∴双曲线的,结合,得离心率.
故答案为:.
【答案点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1).(2)
【答案解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;