温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
浙江
台州市
书生
中学
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设为非零向量,则“”是“与共线”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
2.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )
A.平均数为20,方差为4 B.平均数为11,方差为4
C.平均数为21,方差为8 D.平均数为20,方差为8
3.复数的共轭复数为( )
A. B. C. D.
4.二项式的展开式中,常数项为( )
A. B.80 C. D.160
5.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为( )
A.1 B. C. D.
6.已知函数,若,,,则a,b,c的大小关系是( )
A. B. C. D.
7.在复平面内,复数(为虚数单位)对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.已知,则下列不等式正确的是( )
A. B.
C. D.
9.函数的图象在点处的切线为,则在轴上的截距为( )
A. B. C. D.
10.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )
A. B. C. D.
11.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )
A. B. C. D.
12.若为虚数单位,则复数,则在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题:本题共4小题,每小题5分,共20分。
13.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.
14.设实数,满足,则的最大值是______.
15.若,且,则的最小值是______.
16.的展开式中的常数项为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.
(1)求证:平面;
(2)设,若直线与平面所成的角为,求二面角的正弦值.
18.(12分)已知函数.
(1)当时,求函数在处的切线方程;
(2)若函数没有零点,求实数的取值范围.
19.(12分)在中,角的对边分别为.已知,且.
(1)求的值;
(2)若的面积是,求的周长.
20.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形, ,.
(Ⅰ)求证:;
(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.
21.(12分)已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.
(1)求抛物线的方程;
(2)直线与抛物线交于、两点,若,求点到直线的最大距离.
22.(10分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.
(1)证明:平面.
(2)三棱锥的体积最大时,求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据向量共线的性质依次判断充分性和必要性得到答案.
【题目详解】
若,则与共线,且方向相同,充分性;
当与共线,方向相反时,,故不必要.
故选:.
【答案点睛】
本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.
2、D
【答案解析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.
【题目详解】
样本的平均数是10,方差为2,
所以样本的平均数为,方差为.
故选:D.
【答案点睛】
样本的平均数是,方差为,则的平均数为,方差为.
3、D
【答案解析】
直接相乘,得,由共轭复数的性质即可得结果
【题目详解】
∵
∴其共轭复数为.
故选:D
【答案点睛】
熟悉复数的四则运算以及共轭复数的性质.
4、A
【答案解析】
求出二项式的展开式的通式,再令的次数为零,可得结果.
【题目详解】
解:二项式展开式的通式为,
令,解得,
则常数项为.
故选:A.
【答案点睛】
本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.
5、C
【答案解析】
对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.
【题目详解】
对任意的总有恒成立
,对恒成立,
令,
可得
令,得
当,
当
,,
故
令,得
当时,
当,
当时,
故选:C.
【答案点睛】
本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.
6、D
【答案解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.
【题目详解】
解:根据题意,函数,其导数函数,
则有在上恒成立,
则在上为增函数;
又由,
则;
故选:.
【答案点睛】
本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.
7、C
【答案解析】
化简复数为、的形式,可以确定对应的点位于的象限.
【题目详解】
解:复数
故复数对应的坐标为位于第三象限
故选:.
【答案点睛】
本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.
8、D
【答案解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.
【题目详解】
已知,赋值法讨论的情况:
(1)当时,令,,则,,排除B、C选项;
(2)当时,令,,则,排除A选项.
故选:D.
【答案点睛】
比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.
9、A
【答案解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.
【题目详解】
,故,
所以曲线在处的切线方程为:.
令,则,故切线的纵截距为.
故选:A.
【答案点睛】
本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.
10、A
【答案解析】
=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.
11、B
【答案解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.
【题目详解】
由题意甲、乙租车费用为3元的概率分别是,
∴甲、乙两人所扣租车费用相同的概率为
.
故选:B.
【答案点睛】
本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.
12、B
【答案解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.
【题目详解】
,
,
则在复平面内对应的点的坐标为,位于第二象限.
故选:B
【答案点睛】
本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.
【题目详解】
如图,连接,,,∵分别为棱的中点,∴,
又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.
故答案为:.
【答案点睛】
本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.
14、1
【答案解析】
根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解.
【题目详解】
作出实数,满足表示的平面区域,如图所示:
由可得,则表示直线在轴上的截距,截距越小,越大.
由可得,此时最大为1,
故答案为:1.
【答案点睛】
本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想.
15、8
【答案解析】
利用的代换,将写成,然后根据基本不等式求解最小值.
【题目详解】
因为(即 取等号),
所以最小值为.
【答案点睛】
已知,求解( )的最小值的处理方法:利用
,得到,展开后利用基本不等式求解,注意取等号的条件.
16、
【答案解析】
写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.
【题目详解】
的展开式通项公式为: ,
令,所以,所以常数项为.
故答案为:.
【答案点睛】
本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2).
【答案解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.
【题目详解】
(1)证明:∵四边形是菱形,
,
平面
平面,
又是的中点,
,
又
平面
(2)
∴直线与平面所成的角等于直线与平面所成的角.
平面,
∴直线与平面所成的角为,即.
因为,则在等腰直角三角形中,
所以.
在中,由得,
以为原点,分别以为轴建立空间直角坐标系.
则
所以
设平面的一个法向量为,
则,可得,
取平面的一个法向量为,
则,
所以二面角的正弦值的大小为.
(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)
【答案点睛】
本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.
18、(1).(2)
【答案解析】
(1)利用导数的几何意义求解即可;
(2)利用导数得出的单调性以及极值,从而得出的图象,将函数的零点问题转化为函数图象的交点问题,由图,即可得出实数的取值范围.
【题目详解】
(1)当时,,
∴切线斜率,又切点
∴切线方程为,即.
(2),记,令得
;
∴的情况如下表:
2
+
0
单调递增
极大值
单调递减
当时,取极大值
又时,;时,
若没有零点,即的图像与直线无公共点,由图像知的取值范围是.
【答案点睛】
本题主要考查了导数的几何意义的应用,利用导数研究函数的零点问题,属于中档题.
19、(1);(2)
【答案解析】
(1)由正弦定理可得,,化简并结合,可求得三者间的关系,代入余弦定理可求得;
(2)由(1)可求得,再结合三角形的面积公式,可求出,从而可求出答案.
【题目详解】
(1)因为,
所以,整理得:.
因为,所以,所以.
由余弦定理可得.
(2)由(1)知,则,
因为的面积是,所以,
即,解得,则.
故的周长为:.
【答案点睛