分享
2023届天津市滨海新区七所重点中学高考全国统考预测密卷数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 天津市 滨海新区 重点中学 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若,则“”是 “”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.已知,复数,,且为实数,则( ) A. B. C.3 D.-3 3.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为( ) A. B. C. D. 4.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( ) A. B. C. D. 5.若直线经过抛物线的焦点,则( ) A. B. C.2 D. 6.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( ) A. B.6 C. D. 7.计算等于( ) A. B. C. D. 8.已知满足,则( ) A. B. C. D. 9. “”是“,”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 10.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A. B. C. D. 11.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=( ) A.{x|x>﹣2} B.{x|1<x<2} C.{x|1≤x≤2} D.∅ 12.复数,是虚数单位,则下列结论正确的是 A. B.的共轭复数为 C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限 二、填空题:本题共4小题,每小题5分,共20分。 13.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元. 14.的展开式中的系数为__________(用具体数据作答). 15.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____. 16.在边长为的菱形中,点在菱形所在的平面内.若,则_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆的离心率为,且过点. (Ⅰ)求椭圆的方程; (Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值. 18.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示: 普查对象类别 顺利 不顺利 合计 企事业单位 40 10 50 个体经营户 100 50 150 合计 140 60 200 (1)写出选择5个国家综合试点地区采用的抽样方法; (2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”; (3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值. 附: 0.10 0.010 0.001 2.706 6.635 10.828 19.(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点. (I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程); (II)设,若,,成等比数列,求的值. 20.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是. (1)求直线l的普通方程与曲线C的直角坐标方程; (2)若直线l与曲线C相交于两点A,B,求线段的长. 21.(12分)已知椭圆的焦距为2,且过点. (1)求椭圆的方程; (2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点, (ⅰ)证明:平分线段(其中为坐标原点); (ⅱ)当取最小值时,求点的坐标. 22.(10分)设函数. (1)求不等式的解集; (2)若的最小值为,且,求的最小值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【题目详解】 当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件. 【答案点睛】 易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果. 2、B 【答案解析】 把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值. 【题目详解】 因为为实数,所以,解得. 【答案点睛】 本题考查复数的概念,考查运算求解能力. 3、A 【答案解析】 根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解. 【题目详解】 当为奇数时,, 则数列奇数项是以为首项,以为公差的等差数列, 当为偶数时,, 则数列中每个偶数项加是以为首项,以为公比的等比数列. 所以 . 故选:A 【答案点睛】 本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题. 4、B 【答案解析】 根据空余部分体积相等列出等式即可求解. 【题目详解】 在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以. 故选:B 【答案点睛】 本题考查圆柱的体积,属于基础题. 5、B 【答案解析】 计算抛物线的交点为,代入计算得到答案. 【题目详解】 可化为,焦点坐标为,故. 故选:. 【答案点睛】 本题考查了抛物线的焦点,属于简单题. 6、D 【答案解析】 根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解. 【题目详解】 如图,该几何体为正方体去掉三棱锥, 所以该几何体的体积为:, 故选:D 【答案点睛】 本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题. 7、A 【答案解析】 利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值. 【题目详解】 原式. 故选:A 【答案点睛】 本小题主要考查诱导公式,考查对数运算,属于基础题. 8、A 【答案解析】 利用两角和与差的余弦公式展开计算可得结果. 【题目详解】 ,. 故选:A. 【答案点睛】 本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题. 9、B 【答案解析】 先求出满足的值,然后根据充分必要条件的定义判断. 【题目详解】 由得,即, ,因此“”是“,”的必要不充分条件. 故选:B. 【答案点睛】 本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断. 10、C 【答案解析】 如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C. 考点:外接球表面积和椎体的体积. 11、B 【答案解析】试题分析:由集合A中的函数,得到,解得:,∴集合,由集合B中的函数,得到,∴集合,则,故选B. 考点:交集及其运算. 12、D 【答案解析】 利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论. 【题目详解】 由题意, 则,的共轭复数为, 复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D. 【答案点睛】 复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值. 【题目详解】 设桶的底面半径为,高为,则, 故, 圆通的造价为 解法一: 当且仅当,即时取等号. 解法二:,则, 令,即,解得,此函数在单调递增; 令,即,解得,此函数在上单调递减; 令,即,解得, 即当时,圆桶的造价最低. 所以 故答案为: 【答案点睛】 本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题. 14、 【答案解析】 利用二项展开式的通项公式可求的系数. 【题目详解】 的展开式的通项公式为, 令,故,故的系数为. 故答案为:. 【答案点睛】 本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题. 15、. 【答案解析】 根据正态分布密度曲线性质,结合求得,即可得解. 【题目详解】 根据正态分布,且, 所以 故该市有人参考,则估计成都市该次统考中成绩大于分的人数为. 故答案为:. 【答案点睛】 此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数. 16、 【答案解析】 以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可. 【题目详解】 解:连接设交于点以点为原点, 分别以直线为轴,建立如图所示的平面直角坐标系, 则: 设 得, 解得, , 或, 显然得出的是定值, 取 则, . 故答案为:. 【答案点睛】 本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(Ⅰ)(Ⅱ)1 【答案解析】 (Ⅰ)由题,得,,解方程组,即可得到本题答案; (Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案. 【题目详解】 (Ⅰ)由题可得,即,, 将点代入方程得,即,解得, 所以椭圆的方程为:; (Ⅱ)由(Ⅰ)知, 设直线,则直线, 联立,整理得, 所以, 联立,整理得, 设,则, 所以, 所以. 【答案点睛】 本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力. 18、(1)分层抽样,简单随机抽样(抽签亦可) (2)有 (3)

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开