温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
天津市
滨海新区
重点中学
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则“”是 “”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.已知,复数,,且为实数,则( )
A. B. C.3 D.-3
3.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为( )
A. B. C. D.
4.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )
A. B. C. D.
5.若直线经过抛物线的焦点,则( )
A. B. C.2 D.
6.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( )
A. B.6 C. D.
7.计算等于( )
A. B. C. D.
8.已知满足,则( )
A. B. C. D.
9. “”是“,”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
10.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )
A. B. C. D.
11.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=( )
A.{x|x>﹣2} B.{x|1<x<2} C.{x|1≤x≤2} D.∅
12.复数,是虚数单位,则下列结论正确的是
A. B.的共轭复数为
C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限
二、填空题:本题共4小题,每小题5分,共20分。
13.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元.
14.的展开式中的系数为__________(用具体数据作答).
15.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.
16.在边长为的菱形中,点在菱形所在的平面内.若,则_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.
18.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:
普查对象类别
顺利
不顺利
合计
企事业单位
40
10
50
个体经营户
100
50
150
合计
140
60
200
(1)写出选择5个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.
附:
0.10
0.010
0.001
2.706
6.635
10.828
19.(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点.
(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);
(II)设,若,,成等比数列,求的值.
20.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C相交于两点A,B,求线段的长.
21.(12分)已知椭圆的焦距为2,且过点.
(1)求椭圆的方程;
(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,
(ⅰ)证明:平分线段(其中为坐标原点);
(ⅱ)当取最小值时,求点的坐标.
22.(10分)设函数.
(1)求不等式的解集;
(2)若的最小值为,且,求的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.
【题目详解】
当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.
【答案点睛】
易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.
2、B
【答案解析】
把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值.
【题目详解】
因为为实数,所以,解得.
【答案点睛】
本题考查复数的概念,考查运算求解能力.
3、A
【答案解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.
【题目详解】
当为奇数时,,
则数列奇数项是以为首项,以为公差的等差数列,
当为偶数时,,
则数列中每个偶数项加是以为首项,以为公比的等比数列.
所以
.
故选:A
【答案点睛】
本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.
4、B
【答案解析】
根据空余部分体积相等列出等式即可求解.
【题目详解】
在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.
故选:B
【答案点睛】
本题考查圆柱的体积,属于基础题.
5、B
【答案解析】
计算抛物线的交点为,代入计算得到答案.
【题目详解】
可化为,焦点坐标为,故.
故选:.
【答案点睛】
本题考查了抛物线的焦点,属于简单题.
6、D
【答案解析】
根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.
【题目详解】
如图,该几何体为正方体去掉三棱锥,
所以该几何体的体积为:,
故选:D
【答案点睛】
本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.
7、A
【答案解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.
【题目详解】
原式.
故选:A
【答案点睛】
本小题主要考查诱导公式,考查对数运算,属于基础题.
8、A
【答案解析】
利用两角和与差的余弦公式展开计算可得结果.
【题目详解】
,.
故选:A.
【答案点睛】
本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.
9、B
【答案解析】
先求出满足的值,然后根据充分必要条件的定义判断.
【题目详解】
由得,即, ,因此“”是“,”的必要不充分条件.
故选:B.
【答案点睛】
本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.
10、C
【答案解析】
如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.
考点:外接球表面积和椎体的体积.
11、B
【答案解析】试题分析:由集合A中的函数,得到,解得:,∴集合,由集合B中的函数,得到,∴集合,则,故选B.
考点:交集及其运算.
12、D
【答案解析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.
【题目详解】
由题意,
则,的共轭复数为,
复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.
【答案点睛】
复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.
【题目详解】
设桶的底面半径为,高为,则,
故,
圆通的造价为
解法一:
当且仅当,即时取等号.
解法二:,则,
令,即,解得,此函数在单调递增;
令,即,解得,此函数在上单调递减;
令,即,解得,
即当时,圆桶的造价最低.
所以
故答案为:
【答案点睛】
本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.
14、
【答案解析】
利用二项展开式的通项公式可求的系数.
【题目详解】
的展开式的通项公式为,
令,故,故的系数为.
故答案为:.
【答案点睛】
本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题.
15、.
【答案解析】
根据正态分布密度曲线性质,结合求得,即可得解.
【题目详解】
根据正态分布,且,
所以
故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.
故答案为:.
【答案点睛】
此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.
16、
【答案解析】
以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.
【题目详解】
解:连接设交于点以点为原点,
分别以直线为轴,建立如图所示的平面直角坐标系,
则:
设
得,
解得,
,
或,
显然得出的是定值,
取
则,
.
故答案为:.
【答案点睛】
本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)(Ⅱ)1
【答案解析】
(Ⅰ)由题,得,,解方程组,即可得到本题答案;
(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.
【题目详解】
(Ⅰ)由题可得,即,,
将点代入方程得,即,解得,
所以椭圆的方程为:;
(Ⅱ)由(Ⅰ)知,
设直线,则直线,
联立,整理得,
所以,
联立,整理得,
设,则,
所以,
所以.
【答案点睛】
本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.
18、(1)分层抽样,简单随机抽样(抽签亦可) (2)有 (3)