温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
浙江省
温州
树人
中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数、满足不等式组,则的最大值为( )
A. B. C. D.
2.已知函数,若曲线上始终存在两点,,使得,且的中点在轴上,则正实数的取值范围为( )
A. B. C. D.
3.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为
A. B. C. D.
4.在中,角,,的对边分别为,,,若,,,则( )
A. B.3 C. D.4
5.已知,则( )
A.2 B. C. D.3
6.已知是函数的极大值点,则的取值范围是
A. B.
C. D.
7.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为( )
A. B. C. D.
8.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为( )
A. B. C. D.
9.已知复数满足,则的最大值为( )
A. B. C. D.6
10.集合,,则=( )
A. B.
C. D.
11.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )
A. B. C. D.
12.方程在区间内的所有解之和等于( )
A.4 B.6 C.8 D.10
二、填空题:本题共4小题,每小题5分,共20分。
13.设,若函数有大于零的极值点,则实数的取值范围是_____
14.对定义在上的函数,如果同时满足以下两个条件:
(1)对任意的总有;
(2)当,,时,总有成立.
则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.
15.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________.
16.若函数,则的值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
18.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.
(1)求;
(2)设数列满足,,求数列的通项公式.
19.(12分)如图,三棱锥中,,,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值.
20.(12分)求下列函数的导数:
(1)
(2)
21.(12分)设函数.
(1)若函数在是单调递减的函数,求实数的取值范围;
(2)若,证明:.
22.(10分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.
(1)求{an}的通项公式;
(2)设bn,求数列{bn}的前n项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.
【题目详解】
画出不等式组所表示平面区域,如图所示,
由目标函数,化为直线,当直线过点A时,
此时直线在y轴上的截距最大,目标函数取得最大值,
又由,解得,
所以目标函数的最大值为,故选A.
【答案点睛】
本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.
2、D
【答案解析】
根据中点在轴上,设出两点的坐标,,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.
【题目详解】
根据条件可知,两点的横坐标互为相反数,不妨设,,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.
【答案点睛】
本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.
3、C
【答案解析】
由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.
4、B
【答案解析】
由正弦定理及条件可得,
即.
,
∴,
由余弦定理得。
∴.选B。
5、A
【答案解析】
利用分段函数的性质逐步求解即可得答案.
【题目详解】
,;
;
故选:.
【答案点睛】
本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.
6、B
【答案解析】
方法一:令,则,,
当,时,,单调递减,
∴时,,,且,
∴,即在上单调递增,
时,,,且,
∴,即在上单调递减,∴是函数的极大值点,∴满足题意;
当时,存在使得,即,
又在上单调递减,∴时,,所以,
这与是函数的极大值点矛盾.
综上,.故选B.
方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.
7、D
【答案解析】
由题意画出图形,找出△PAB外接圆的圆心及三棱锥P﹣BCD的外接球心O,通过求解三角形求出三棱锥P﹣BCD的外接球的半径,则答案可求.
【题目详解】
如图;设AB的中点为D;
∵PA,PB,AB=4,
∴△PAB为直角三角形,且斜边为AB,故其外接圆半径为:rAB=AD=2;
设外接球球心为O;
∵CA=CB,面PAB⊥面ABC,
∴CD⊥AB可得CD⊥面PAB;且DC.
∴O在CD上;
故有:AO2=OD2+AD2⇒R2=(R)2+r2⇒R;
∴球O的表面积为:4πR2=4π.
故选:D.
【答案点睛】
本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.
8、C
【答案解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.
【题目详解】
已知圆,
所以其标准方程为:,
所以圆心为.
因为双曲线,
所以其渐近线方程为,
又因为圆关于双曲线的一条渐近线对称,
则圆心在渐近线上,
所以.
所以.
故选:C
【答案点睛】
本题主要考查圆的方程及对称性,还有双曲线的几何性质 ,还考查了运算求解的能力,属于中档题.
9、B
【答案解析】
设,,利用复数几何意义计算.
【题目详解】
设,由已知,,所以点在单位圆上,
而,表示点
到的距离,故.
故选:B.
【答案点睛】
本题考查求复数模的最大值,其实本题可以利用不等式来解决.
10、C
【答案解析】
先化简集合A,B,结合并集计算方法,求解,即可.
【题目详解】
解得集合,
所以,故选C.
【答案点睛】
本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.
11、C
【答案解析】
求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程
在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.
【题目详解】
依题意,,
令,解得,,故当时,,
当,,且,
故方程在上有两个不同的实数根,
故,
解得.
故选:C.
【答案点睛】
本题考查确定函数零点或方程根个数.其方法:
(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;
(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
12、C
【答案解析】
画出函数和的图像,和均关于点中心对称,计算得到答案.
【题目详解】
,验证知不成立,故,
画出函数和的图像,
易知:和均关于点中心对称,图像共有8个交点,
故所有解之和等于.
故选:.
【答案点睛】
本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先求导数,求解导数为零的根,结合根的分布求解.
【题目详解】
因为,所以,令得,
因为函数有大于0的极值点,所以,即.
【答案点睛】
本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.
14、
【答案解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.
【题目详解】
因为是定义在上G函数,
所以对任意的总有,
则对任意的恒成立,
解得,
当时,
又因为,,时,
总有成立,
即
恒成立,
即恒成立,
又此时的最小值为,
即恒成立,
又因为
解得.
故答案为:
【答案点睛】
本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.
15、
【答案解析】
由题意得出展开式中共有11项,;再令求得展开式中各项的系数和.
【题目详解】
由的展开式中只有第六项的二项式系数最大,
所以展开式中共有11项,所以;
令,可求得展开式中各项的系数和是:
.
故答案为:1.
【答案点睛】
本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.
16、
【答案解析】
根据题意,由函数的解析式求出的值,进而计算可得答案.
【题目详解】
根据题意,函数,
则,
则;
故答案为:.
【答案点睛】
本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)y2=4x;;(2)直线NL恒过定点(﹣3,0),理由见解析.
【答案解析】
(1)根据抛物线的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.
(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,﹣2),B(3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y2=12,然后表示直线NL的方程为:y﹣y1(x),代入化简求解.
【题目详解】
(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,
所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以抛物线的方程为:y2=4x;
(2)设