温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
辽宁省
重点
协作
高考
考前
模拟
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若的二项式展开式中二项式系数的和为32,则正整数的值为( )
A.7 B.6 C.5 D.4
2.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )
A. B. C. D.
3.已知等式成立,则( )
A.0 B.5 C.7 D.13
4.已知直线是曲线的切线,则( )
A.或1 B.或2 C.或 D.或1
5.设等比数列的前项和为,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
6.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为( )
A. B. C. D.
7.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )
A. B. C. D.
8.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
9.已知复数z满足(其中i为虚数单位),则复数z的虚部是( )
A. B.1 C. D.i
10.若复数满足,其中为虚数单位,是的共轭复数,则复数( )
A. B. C.4 D.5
11.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是
A. B. C. D.
12.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.
14.集合,,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为________
①的值可以为2;
②的值可以为;
③的值可以为;
15.若,则__________.
16.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的极坐标方程;
(2)点是曲线上的一点,试判断点与曲线的位置关系.
18.(12分)已知函数.
(1)讨论的单调性;
(2)若,设,证明:,,使.
19.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程;
(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.
20.(12分)如图,在三棱柱中,、、分别是、、的中点.
(1)证明:平面;
(2)若底面是正三角形,,在底面的投影为,求到平面的距离.
21.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.
(1)若a,且a≠0,证明:函数有局部对称点;
(2)若函数在定义域内有局部对称点,求实数c的取值范围;
(3)若函数在R上有局部对称点,求实数m的取值范围.
22.(10分)设等差数列满足,.
(1)求数列的通项公式;
(2)求的前项和及使得最小的的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由二项式系数性质,的展开式中所有二项式系数和为计算.
【题目详解】
的二项展开式中二项式系数和为,.
故选:C.
【答案点睛】
本题考查二项式系数的性质,掌握二项式系数性质是解题关键.
2、C
【答案解析】
如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.
【题目详解】
如图所示:切点为,连接,作轴于,
,故,
在中,,故,故,,
根据勾股定理:,解得.
故选:.
【答案点睛】
本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.
3、D
【答案解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.
【题目详解】
由可知:
令,得;
令,得;
令,得,
得,,而,所以
.
故选:D
【答案点睛】
本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.
4、D
【答案解析】
求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.
【题目详解】
直线的斜率为,
对于,令,解得,故切点为,代入直线方程得,解得或1.
故选:D
【答案点睛】
本小题主要考查根据切线方程求参数,属于基础题.
5、C
【答案解析】
根据等比数列的前项和公式,判断出正确选项.
【题目详解】
由于数列是等比数列,所以,由于,所以
,故“”是“”的充分必要条件.
故选:C
【答案点睛】
本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.
6、D
【答案解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.
考点:三角函数的图象与性质.
7、C
【答案解析】
利用正方体将三视图还原,观察可得最长棱为AD,算出长度.
【题目详解】
几何体的直观图如图所示,易得最长的棱长为
故选:C.
【答案点睛】
本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.
8、A
【答案解析】
分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
9、A
【答案解析】
由虚数单位i的运算性质可得,则答案可求.
【题目详解】
解:∵,
∴,,
则化为,
∴z的虚部为.
故选:A.
【答案点睛】
本题考查了虚数单位i的运算性质、复数的概念,属于基础题.
10、D
【答案解析】
根据复数的四则运算法则先求出复数z,再计算它的模长.
【题目详解】
解:复数z=a+bi,a、b∈R;
∵2z,
∴2(a+bi)﹣(a﹣bi)=,
即,
解得a=3,b=4,
∴z=3+4i,
∴|z|.
故选D.
【答案点睛】
本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.
11、B
【答案解析】
初始:,,第一次循环:,,继续循环;
第二次循环:,,此时,满足条件,结束循环,
所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.
12、C
【答案解析】
在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.
【题目详解】
∵直线是曲线的一条对称轴.
,又.
.
∴平移后曲线为.
曲线的一个对称中心为.
.
,注意到
故的最小值为.
故选:C.
【答案点睛】
本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、或
【答案解析】
用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.
【题目详解】
联立解得.
所以的面积,所以.
而由双曲线的焦距为知,,所以.
联立解得或
故双曲线的离心率为或.
故答案为:或.
【答案点睛】
本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.
14、②③
【答案解析】
根据对称性,只需研究第一象限的情况,计算:,得到,,得到答案.
【题目详解】
如图所示:根据对称性,只需研究第一象限的情况,
集合:,故,即或,
集合:,是平面上正八边形的顶点所构成的集合,
故所在的直线的倾斜角为,,故:,
解得,此时,,此时.
故答案为:②③.
【答案点睛】
本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.
15、
【答案解析】
因为,由二倍角公式得到 ,故得到
.
故答案为.
16、0或6
【答案解析】
计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.
【题目详解】
,即,圆心,半径.
,故圆心到直线的距离为,即,故或.
故答案为:或.
【答案点睛】
本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)点在曲线外.
【答案解析】
(1)先消参化曲线的参数方程为普通方程,再化为极坐标方程;
(2)由点是曲线上的一点,利用的范围判断的范围,即可判断位置关系.
【题目详解】
(1)由曲线的参数方程为可得曲线的普通方程为,则曲线的极坐标方程为,即
(2)由题,点是曲线上的一点,
因为,所以,即,
所以点在曲线外.
【答案点睛】
本题考查参数方程与普通方程的转化,考查直角坐标方程与极坐标方程的转化,考查点与圆的位置关系.
18、(1)见解析;(2)证明见解析.
【答案解析】
(1),分,,,四种情况讨论即可;
(2)问题转化为,利用导数找到与即可证明.
【题目详解】
(1).
①当时,恒成立,
当时,;
当时,,所以,
在上是减函数,在上是增函数.
②当时,,.
当时,;
当时,;
当时,,所以,
在上是减函数,在上是增函数,
在上是减函数.
③当时,,
则在上是减函数.
④当时,,
当时,;
当时,;
当时,,
所以,在上是减函数,
在上是增函数,在上是减函数.
(2)由题意,得.
由(1)知,当,时,,
.
令,,
故在上是减函数,有,
所以,从而.
,,
则,
令,显然在上是增函数,
且,,
所以存在使,
且在上是减函数,
在上是增函数,
,
所以,
所以,命题成立.
【答案点睛】
本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.
19、(1),;(2).
【答案解析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;
(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再