温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
陕西省
咸阳市
旬邑
中学
高考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数,若,则的值为( )
A.1 B. C. D.
2.执行如图所示的程序框图后,输出的值为5,则的取值范围是( ).
A. B. C. D.
3.函数的大致图象是( )
A. B.
C. D.
4.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为( )
A. B. C. D.
5.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )
A.12个月的PMI值不低于50%的频率为
B.12个月的PMI值的平均值低于50%
C.12个月的PMI值的众数为49.4%
D.12个月的PMI值的中位数为50.3%
6.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为( )
A. B. C. D.
7.关于函数,有下述三个结论:
①函数的一个周期为;
②函数在上单调递增;
③函数的值域为.
其中所有正确结论的编号是( )
A.①② B.② C.②③ D.③
8.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为( )
A. B. C. D.
9.某四棱锥的三视图如图所示,该几何体的体积是( )
A.8 B. C.4 D.
10.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为( )
A. B. C.2 D.4
11.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).
A.6 B.5 C.4 D.3
12.空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是( )
A.这20天中指数值的中位数略高于100
B.这20天中的中度污染及以上(指数)的天数占
C.该市10月的前半个月的空气质量越来越好
D.总体来说,该市10月上旬的空气质量比中旬的空气质量好
二、填空题:本题共4小题,每小题5分,共20分。
13.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.
14.若函数 (R,)满足,且的最小值等于,则ω的值为___________.
15.已知数列为正项等比数列,,则的最小值为________.
16.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列是等差数列,前项和为,且,.
(1)求.
(2)设,求数列的前项和.
18.(12分)已知函数(,),.
(Ⅰ)讨论的单调性;
(Ⅱ)若对任意的,恒成立,求实数的取值范围.
19.(12分)设函数,.
(1)解不等式;
(2)若对任意的实数恒成立,求的取值范围.
20.(12分)已知数列,满足.
(1)求数列,的通项公式;
(2)分别求数列,的前项和,.
21.(12分)设数列满足,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
22.(10分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 .
(1)求点的坐标;
(2)求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
由复数模的定义可得:,求解关于实数的方程可得:.
本题选择D选项.
2、C
【答案解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.
【题目详解】
第一次循环:;第二次循环:;
第三次循环:;第四次循环:;
此时满足输出结果,故.
故选:C.
【答案点睛】
本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.
3、A
【答案解析】
用排除B,C;用排除;可得正确答案.
【题目详解】
解:当时,,,
所以,故可排除B,C;
当时,,故可排除D.
故选:A.
【答案点睛】
本题考查了函数图象,属基础题.
4、D
【答案解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.
考点:三角函数的图象与性质.
5、D
【答案解析】
根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.
【题目详解】
对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;
对B,由图可以看出,PMI值的平均值低于50%,故B正确;
对C,12个月的PMI值的众数为49.4%,故C正确,;
对D,12个月的PMI值的中位数为49.6%,故D错误
故选:D.
【答案点睛】
本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.
6、B
【答案解析】
根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.
【题目详解】
因为双曲线的焦距为,
故可得,解得,不妨取;
又焦点,其中一条渐近线为,
由点到直线的距离公式即可求的.
故选:B.
【答案点睛】
本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.
7、C
【答案解析】
①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.
【题目详解】
因为,故①错误;
当时,,所以,所以在上单调递增,故②正确;
函数的值域等价于函数的值域,易知,故当时,,故③正确.
故选:C.
【答案点睛】
本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.
8、D
【答案解析】
由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,
可知为的三等分点,且,
点在直线上,并且,则,,
设,则,
解得,即,
代入双曲线的方程可得,解得,故选D.
点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).
9、D
【答案解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.
【题目详解】
根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:
结合图中数据知,该四棱锥底面为对角线为2的正方形,
高为PA=2,
∴四棱锥的体积为.
故选:D.
【答案点睛】
本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.
10、A
【答案解析】
由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.
【题目详解】
解:设双曲线的半个焦距为,由题意
又,则,,,所以离心率,
故选:A.
【答案点睛】
本题考查双曲线的简单几何性质,属于基础题
11、C
【答案解析】
若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.
【题目详解】
由已知,,又三角形有一个内角为,所以,
,解得或(舍),
故,当时,取得最大值,所以.
故选:C.
【答案点睛】
本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.
12、C
【答案解析】
结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.
【题目详解】
对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.
对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.
对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.
对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.
故选:
【答案点睛】
本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。
【题目详解】
八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。
∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。
故答案为:。
【答案点睛】
本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。
14、1
【答案解析】
利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的距离为,进而求解即可.
【题目详解】
由题,,
因为,,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,
所以,即,
所以,
故答案为:1
【答案点睛】
本题考查正弦型函数的对称性的应用,考查三角函数的化简.
15、27
【答案解析】
利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.
【题目详解】
由等比数列的性质可知,则,
.
当且仅当时取得最小值.
故答案为:.
【答案点睛】
本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.
16、2
【答案解析】
根据比赛场次,分析,画出图象,计算结果.
【题目详解】
画图所示,可知目前(五)班已经赛了2场.
故答案为:2
【答案点睛】
本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、 (1) (2)
【答案解析】
(1)由数列是等差数列,所以,解得,又由,解得, 即可求得数列的通项公式;
(2)由