温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
四川省
成都
龙泉
中学
高考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合,,则( )
A. B. C. D.
2.若的展开式中的常数项为-12,则实数的值为( )
A.-2 B.-3 C.2 D.3
3.在中,点D是线段BC上任意一点,,,则( )
A. B.-2 C. D.2
4.若x,y满足约束条件则z=的取值范围为( )
A.[] B.[,3] C.[,2] D.[,2]
5.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )
A. B. C. D.
6.函数的部分图象大致是( )
A. B.
C. D.
7.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则( )
A. B.
C. D.
8.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )
A. B. C. D.
9.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( )
A.8 B.9 C.10 D.11
10.在中,角、、所对的边分别为、、,若,则( )
A. B. C. D.
11.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( )
A. B. C. D.
12.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.3 C. D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.
14.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.
15.已知向量=(-4,3),=(6,m),且,则m=__________.
16.已知数列满足对任意,若,则数列的通项公式________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.
(1)证明:平面PNB;
(2)问棱PA上是否存在一点E,使平面DEM,求的值
18.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.
(1)若,求线段的中点的坐标;
(2)设点,若,求直线的斜率.
19.(12分)已知函数,曲线在点处的切线方程为.
(Ⅰ)求,的值;
(Ⅱ)若,求证:对于任意,.
20.(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
同意
不同意
合计
男生
a
5
女生
40
d
合计
100
(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.
附:
0.15
0.100
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
21.(12分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上.
(1)求椭圆的标准方程;
(2)如图,为直线上任一点,过点椭圆上点处的切线为,,切点分别,,直线与直线,分别交于,两点,点,的纵坐标分别为,,求的值.
22.(10分)已知函数.
(1)解不等式;
(2)若函数存在零点,求的求值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.
【题目详解】
由可得,所以,由可得,所以,所以,故选A.
【答案点睛】
本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.
2、C
【答案解析】
先研究的展开式的通项,再分中,取和两种情况求解.
【题目详解】
因为的展开式的通项为,
所以的展开式中的常数项为:,
解得,
故选:C.
【答案点睛】
本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.
3、A
【答案解析】
设,用表示出,求出的值即可得出答案.
【题目详解】
设
由
,
,
.
故选:A
【答案点睛】
本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.
4、D
【答案解析】
由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.
【题目详解】
由题意作出可行域,如图,
目标函数可表示连接点和可行域内的点的直线斜率的倒数,
由图可知,直线的斜率最小,直线的斜率最大,
由可得,由可得,
所以,,所以.
故选:D.
【答案点睛】
本题考查了非线性规划的应用,属于基础题.
5、C
【答案解析】
令圆的半径为1,则,故选C.
6、C
【答案解析】
判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.
【题目详解】
,函数是奇函数,排除,
时,,时,,排除,
当时,,
时,,排除,
符合条件,故选C.
【答案点睛】
本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.
7、D
【答案解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案
【题目详解】
连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.
【答案点睛】
本题考查向量的线性运算问题,属于基础题
8、B
【答案解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.
【题目详解】
由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称
故的最小值为
故选:B
【答案点睛】
本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.
9、D
【答案解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.
【题目详解】
由题意,本题符合几何概型,区间长度为6,
使得成立的的范围为,区间长度为2,
故使得成立的概率为,
又,,,
令,则有,故的最小值为11,
故选:D.
【答案点睛】
该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.
10、D
【答案解析】
利用余弦定理角化边整理可得结果.
【题目详解】
由余弦定理得:,
整理可得:,.
故选:.
【答案点睛】
本题考查余弦定理边角互化的应用,属于基础题.
11、D
【答案解析】
首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.
【题目详解】
经判断此循环为“直到型”结构,判断框为跳出循环的语句,
第一次循环:;
第二次循环:;
第三次循环:,
此时退出循环,根据判断框内为跳出循环的语句,,故选D.
【答案点睛】
题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.
12、C
【答案解析】
首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.
【题目详解】
解:根据几何体的三视图转换为几何体为:
该几何体为由一个三棱柱体,切去一个三棱锥体,
如图所示:
故:.
故选:C.
【答案点睛】
本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.
【题目详解】
如图:
此四棱锥的高为,底面是长为,宽为2的矩形,
所以体积.
所以本题答案为.
【答案点睛】
本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.
14、
【答案解析】
把 绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.
【题目详解】
将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,
故答案为:
【答案点睛】
本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.
15、8.
【答案解析】
利用转化得到加以计算,得到.
【题目详解】
向量
则.
【答案点睛】
本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.
16、
【答案解析】
由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.
【题目详解】
由,得
,数列是等比数列,首项为2,公比为2,
,,
,
,满足上式,.
故答案为:.
【答案点睛】
本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析;(2)存在,.
【答案解析】
(1)根据题意证出,,再由线面垂直的判定定理即可证出.
(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.
【题目详解】