温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
吉林省
延边
第二
中学
高考
冲刺
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于函数,下列说法正确的是( )
A.函数的定义域为
B.函数一个递增区间为
C.函数的图像关于直线对称
D.将函数图像向左平移个单位可得函数的图像
2.已知函数的图象如图所示,则可以为( )
A. B. C. D.
3.设复数z=,则|z|=( )
A. B. C. D.
4.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )
A. B. C. D.
5.若复数(为虚数单位),则( )
A. B. C. D.
6.某程序框图如图所示,若输出的,则判断框内为( )
A. B. C. D.
7.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )
A. B. C. D.
8.若x,y满足约束条件且的最大值为,则a的取值范围是( )
A. B. C. D.
9.设函数的导函数,且满足,若在中,,则( )
A. B. C. D.
10.已知向量,,且与的夹角为,则x=( )
A.-2 B.2 C.1 D.-1
11.函数的图象可能是下列哪一个?( )
A. B.
C. D.
12.已知非零向量、,若且,则向量在向量方向上的投影为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.
14.设集合,,则____________.
15.若实数满足不等式组则目标函数的最大值为__________.
16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.
(1)证明:面面;
(2)当为中点时,求二面角余弦值.
18.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.
(1)求数列和的通项公式;
(2)求数列的前项和.
19.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购
偶尔或不用网购
合计
男性
50
100
女性
70
100
合计
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
20.(12分)设函数,其中.
(Ⅰ)当为偶函数时,求函数的极值;
(Ⅱ)若函数在区间上有两个零点,求的取值范围.
21.(12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数有两个极值点,求证:.
22.(10分)已知函数为实数)的图像在点处的切线方程为.
(1)求实数的值及函数的单调区间;
(2)设函数,证明时, .
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.
【题目详解】
,
故函数的定义域为,故错误;
当时,,函数单调递增,故正确;
当,关于的对称的直线为不在定义域内,故错误.
平移得到的函数定义域为,故不可能为,错误.
故选:.
【答案点睛】
本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.
2、A
【答案解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.
【题目详解】
首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;
其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.
故选:A.
【答案点睛】
本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.
3、D
【答案解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.
【题目详解】
解:z====﹣﹣,
则|z|====.
故选:D.
【答案点睛】
本题考查复数的基本概念和基本运算,属于基础题.
4、A
【答案解析】
由已知可得,根据二倍角公式即可求解.
【题目详解】
角的顶点与原点重合,始边与轴的正半轴重合,
终边经过点,则,
.
故选:A.
【答案点睛】
本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.
5、B
【答案解析】
根据复数的除法法则计算,由共轭复数的概念写出.
【题目详解】
,
,
故选:B
【答案点睛】
本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.
6、C
【答案解析】
程序在运行过程中各变量值变化如下表:
K
S
是否继续循环
循环前
1
1
第一圈
2
4
是
第二圈
3
11
是
第三圈
4
26
是
第四圈
5
57
是
第五圈
6
120
否
故退出循环的条件应为k>5?
本题选择C选项.
点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.
7、A
【答案解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.
【题目详解】
设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.
故选:A
【答案点睛】
本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.
8、A
【答案解析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.
【题目详解】
作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.
故选:A
【答案点睛】
本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
9、D
【答案解析】
根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.
【题目详解】
设,
所以 ,
因为当时,,
即,
所以,在上是增函数,
在中,因为,所以,,
因为,且,
所以,
即,
所以,
即
故选:D
【答案点睛】
本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.
10、B
【答案解析】
由题意,代入解方程即可得解.
【题目详解】
由题意,
所以,且,解得.
故选:B.
【答案点睛】
本题考查了利用向量的数量积求向量的夹角,属于基础题.
11、A
【答案解析】
由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.
【题目详解】
由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.
【答案点睛】
本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.
12、D
【答案解析】
设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.
【题目详解】
,由得,整理得,
,解得,
因此,向量在向量方向上的投影为.
故选:D.
【答案点睛】
本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.
【题目详解】
分三步来考查:①从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;
②从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;
③从到,由①可知有种走法.
由分步乘法计数原理可知,共有种不同的走法.
故答案为:.
【答案点睛】
本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.
14、
【答案解析】
先解不等式,再求交集的定义求解即可.
【题目详解】
由题,因为,解得,即,
则,
故答案为:
【答案点睛】
本题考查集合的交集运算,考查解一元二次不等式.
15、12
【答案解析】
画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.
【题目详解】
根据约束条件画出可行域,如下图,由,解得
目标函数,当过点时,有最大值,且最大值为.
故答案为:.
【答案点睛】
本题考查线性规划的简单应用,属于基础题.
16、;
【答案解析】
求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.
【题目详解】
由,得,,
,,
∵,
∴ ,解得.
故答案为:.
【答案点睛】
本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析;(2).
【答案解析】
(1)要证明面面,只需证明面即可;
(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.
【题目详解】
证明:(1)因为底面为正方形,所以
又因为,,满足,
所以
又,面,面,
,
所以面.
又因为面,所以,面面.