分享
2023届江苏省淮安市淮阴中学高考仿真卷数学试卷(含解析).doc
下载文档

ID:18501

大小:2.41MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 江苏省 淮安市 淮阴 中学 高考 仿真 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.双曲线的渐近线方程为( ) A. B. C. D. 2.在正项等比数列{an}中,a5-a1=15,a4-a2 =6,则a3=( ) A.2 B.4 C. D.8 3.设、,数列满足,,,则( ) A.对于任意,都存在实数,使得恒成立 B.对于任意,都存在实数,使得恒成立 C.对于任意,都存在实数,使得恒成立 D.对于任意,都存在实数,使得恒成立 4.若是定义域为的奇函数,且,则 A.的值域为 B.为周期函数,且6为其一个周期 C.的图像关于对称 D.函数的零点有无穷多个 5.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( ) A. B. C.1 D. 6.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( ) A. B. C. D. 7.若不等式对恒成立,则实数的取值范围是( ) A. B. C. D. 8.已知复数,则的虚部为( ) A. B. C. D.1 9.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是( ) A. B. C. D. 10.若复数是纯虚数,则( ) A.3 B.5 C. D. 11.已知复数满足(是虚数单位),则=(  ) A. B. C. D. 12.已知集合,,若,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________. 14.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论: ①为的重心; ②; ③当时,平面; ④当三棱锥的体积最大时,三棱锥外接球的表面积为. 其中,所有正确结论的序号是________________. 15.曲线在处的切线的斜率为________. 16.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为. (l)求直线的普通方程和曲线C的直角坐标方程: (2)若直线与曲线C相交于A,B两点,且.求直线 的方程. 18.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线. (1)求曲线的方程; (2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值. 19.(12分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是.称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题: (1)如果植物的上一代父系、母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少? (2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,.求杂交所得子代的三种遗传性状,(或),所占的比例. (3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为.设第代遗传因子和的频率分别为和,已知有以下公式.证明是等差数列. (4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生? 20.(12分)已知的内角,,的对边分别为,,,. (1)若,证明:. (2)若,,求的面积. 21.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列. (1)求的值; (2)若的面积为求的值. 22.(10分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数. (1)写出与的直角坐标方程; (2)在什么范围内取值时,与有交点. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 根据双曲线的标准方程,即可写出渐近线方程. 【题目详解】 双曲线, 双曲线的渐近线方程为, 故选:C 【答案点睛】 本题主要考查了双曲线的简单几何性质,属于容易题. 2、B 【答案解析】 根据题意得到,,解得答案. 【题目详解】 ,,解得或(舍去). 故. 故选:. 【答案点睛】 本题考查了等比数列的计算,意在考查学生的计算能力. 3、D 【答案解析】 取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案. 【题目详解】 取,,数列恒单调递增,且不存在最大值,故排除AB选项; 由蛛网图可知,存在两个不动点,且,, 因为当时,数列单调递增,则; 当时,数列单调递减,则; 所以要使,只需要,故,化简得且. 故选:D. 【答案点睛】 本题考查递推数列的综合运用,考查逻辑推理能力,属于难题. 4、D 【答案解析】 运用函数的奇偶性定义,周期性定义,根据表达式判断即可. 【题目详解】 是定义域为的奇函数,则,, 又,, 即是以4为周期的函数,, 所以函数的零点有无穷多个; 因为,,令,则, 即,所以的图象关于对称, 由题意无法求出的值域, 所以本题答案为D. 【答案点睛】 本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键. 5、D 【答案解析】 根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值. 【题目详解】 由于直角边为直径的半圆的面积之比为,所以,即,所以,所以. 故选:D 【答案点睛】 本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 6、B 【答案解析】 设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可. 【题目详解】 如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则, 在中,,化为, , , 当且仅当时取等号,此时. 故选:B. 【答案点睛】 本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题. 7、B 【答案解析】 转化为,构造函数,利用导数研究单调性,求函数最值,即得解. 【题目详解】 由,可知. 设,则, 所以函数在上单调递增, 所以. 所以. 故的取值范围是. 故选:B 【答案点睛】 本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 8、C 【答案解析】 先将,化简转化为,再得到下结论. 【题目详解】 已知复数, 所以, 所以的虚部为-1. 故选:C 【答案点睛】 本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题. 9、D 【答案解析】 过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案. 【题目详解】 解:因为,,所以,即 过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系, 则,0,,,,,,0,,,1,, ,, ,,, 设平面的法向量, 则,取,得, 同理可求平面的法向量, 平面的法向量,平面的法向量. ,,. . 故选:D. 【答案点睛】 本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题. 10、C 【答案解析】 先由已知,求出,进一步可得,再利用复数模的运算即可 【题目详解】 由z是纯虚数,得且,所以,. 因此,. 故选:C. 【答案点睛】 本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题. 11、A 【答案解析】 把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【题目详解】 解:由,得, . 故选. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 12、A 【答案解析】 由,得,代入集合B即可得. 【题目详解】 ,,,即:, 故选:A 【答案点睛】 本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积; 【题目详解】 解:依题意可得、、、四点共圆, 所以 因为, 所以,, 所以三角形为正三角形,则,, 利用余弦定理得 即,解得,则 所以, 当面面时,取得最大, 所以的外接圆的半径, 又面面,,且面面, 面 所以面, 所以外接球的半径 所以 故答案为: 【答案点睛】 本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题. 14、①②③ 【答案解析】 ①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的; ②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确; ③若设,则由可得,然后对应边成比例,可解,所以③正确; ④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开