温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
沁阳市
第一
中学
高考
仿真
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数满足,且,则的最小值是( )
A. B. C. D.
2.已知函数若对区间内的任意实数,都有,则实数的取值范围是( )
A. B. C. D.
3. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )
A.56383 B.57171 C.59189 D.61242
4.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是( )
A.椭圆 B.双曲线 C.抛物线 D.圆
5.下列函数中,在定义域上单调递增,且值域为的是( )
A. B. C. D.
6.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
A. B. C. D.
7.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )
A. B. C. D.
8.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为( )
A. B. C. D.
9.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是( )
A. B. C. D.
10.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )
A. B. C. D.
11.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )
A. B. C. D.
12.已知函数若恒成立,则实数的取值范围是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13. (x+y)(2x-y)5的展开式中x3y3的系数为________.
14.在中,,,,则__________.
15.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.
16.在中,,,,则________,的面积为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.
(1)求椭圆C的方程;
(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.
18.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.
(1)求的方程;
(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.
19.(12分)如图,在三棱柱中,、、分别是、、的中点.
(1)证明:平面;
(2)若底面是正三角形,,在底面的投影为,求到平面的距离.
20.(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;
(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.
21.(12分)如图,四棱锥中,平面,,,.
(I)证明:;
(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.
22.(10分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:
月收入(单位:百元)
频数
5
10
5
5
频率
0.1
0.2
0.1
0.1
赞成人数
4
8
12
5
2
1
(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.
(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.
(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.
【题目详解】
函数满足,,即,
,,,即,
,则,
由基本不等式得,当且仅当时,等号成立.
,
由于函数在区间上为增函数,
所以,当时,取得最小值.
故选:A.
【答案点睛】
本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.
2、C
【答案解析】
分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.
详解:由题得.
当a<1时,,所以函数f(x)在单调递减,
因为对区间内的任意实数,都有,
所以,
所以
故a≥1,与a<1矛盾,故a<1矛盾.
当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.
所以
因为对区间内的任意实数,都有,
所以,
所以
即
令,
所以
所以函数g(a)在(1,e)上单调递减,
所以,
所以当1≤a<e时,满足题意.
当a时,函数f(x)在(0,1)单调递增,
因为对区间内的任意实数,都有,
所以,
故1+1,
所以
故
综上所述,a∈.
故选C.
点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.
3、C
【答案解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.
【题目详解】
被5除余3且被7除余2的正整数构成首项为23,
公差为的等差数列,记数列
则
令,解得.
故该数列各项之和为.
故选:C.
【答案点睛】
本题考查等差数列的应用,属基础题。
4、B
【答案解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.
【题目详解】
因为线段的垂直平分线与直线相交于点,如下图所示:
所以有,而是中点,连接,故,
因此
当在如下图所示位置时有,所以有,而是中点,连接,
故,因此,
综上所述:有,所以点的轨迹是双曲线.
故选:B
【答案点睛】
本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.
5、B
【答案解析】
分别作出各个选项中的函数的图象,根据图象观察可得结果.
【题目详解】
对于,图象如下图所示:
则函数在定义域上不单调,错误;
对于,的图象如下图所示:
则在定义域上单调递增,且值域为,正确;
对于,的图象如下图所示:
则函数单调递增,但值域为,错误;
对于,的图象如下图所示:
则函数在定义域上不单调,错误.
故选:.
【答案点睛】
本题考查函数单调性和值域的判断问题,属于基础题.
6、C
【答案解析】
联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.
【题目详解】
依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.
由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4
又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形
点M到直线NF的距离为
故选:C.
【答案点睛】
本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.
7、A
【答案解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.
【题目详解】
由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,
设圆的半径为,每个等腰三角形的顶角为,
所以每个等腰三角形的面积为,
所以圆的面积为,即,
所以当时,可得,
故选:A
【答案点睛】
本题考查三角形面积公式的应用,考查阅读分析能力.
8、B
【答案解析】
由题意画出图形,设球0得半径为R,AB=x, AC=y,由球0的表面积为20π,可得R2=5,再求出三角形A BC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.
【题目详解】
设球的半径为,,,
由,得.
如图:
设三角形的外心为,连接,,,
可得