温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
吉林省
乾安县
中高
仿真
模拟
数学试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )
A. B. C. D.
2.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )
A. B.
C. D.
3.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )
A. B. C.2或 D.2或
4.若复数()在复平面内的对应点在直线上,则等于( )
A. B. C. D.
5.已知实数满足不等式组,则的最小值为( )
A. B. C. D.
6.已知数列,,,…,是首项为8,公比为得等比数列,则等于( )
A.64 B.32 C.2 D.4
7.是平面上的一定点,是平面上不共线的三点,动点满足 ,,则动点的轨迹一定经过的( )
A.重心 B.垂心 C.外心 D.内心
8.函数,,则“的图象关于轴对称”是“是奇函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
9.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=( )
A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}
10.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为( )
A. B. C. D.
11.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为( )
A. B. C. D.
12.已知集合,则等于( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)
14.已知向量满足,且,则 _________.
15.若变量,满足约束条件,则的最大值为__________.
16.实数满足,则的最大值为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知在中,角,,的对边分别为,,,的面积为.
(1)求证:;
(2)若,求的值.
18.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.
(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;
(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.
19.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.
(1)求异面直线AP,BM所成角的余弦值;
(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.
20.(12分)已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
21.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.
(Ⅰ)求证:面;
(Ⅱ)求证:平面平面;
(Ⅲ)求该几何体的体积.
22.(10分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:
来A城市发展的理由
人数
合计
自然环境
1.森林城市,空气清新
200
300
2.降水充足,气候怡人
100
人文环境
3.城市服务到位
150
700
4.创业氛围好
300
5.开放且包容
250
合计
1000
1000
(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;
(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;
(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?
自然环境
人文环境
合计
男
女
合计
附:,.
P()
0.050
0.010
0.001
k
3.841
6.635
10.828
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.
【题目详解】
从八卦中任取两卦基本事件的总数种,
这两卦的六根线中恰有四根阴线的基本事件数有6种,
分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),
所以这两卦的六根线中恰有四根阴线的概率是.
故选:B
【答案点睛】
本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.
2、C
【答案解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.
【题目详解】
如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.
故选:C
【答案点睛】
本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.
3、C
【答案解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.
【题目详解】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.
故选:C
【答案点睛】
本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.
4、C
【答案解析】
由题意得,可求得,再根据共轭复数的定义可得选项.
【题目详解】
由题意得,解得,所以,所以,
故选:C.
【答案点睛】
本题考查复数的几何表示和共轭复数的定义,属于基础题.
5、B
【答案解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.
【题目详解】
作出实数满足不等式组的可行域,如图(阴影部分)
令,则,
作出,平移直线,当直线经过点时,截距最小,
故,
即的最小值为.
故选:B
【答案点睛】
本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.
6、A
【答案解析】
根据题意依次计算得到答案.
【题目详解】
根据题意知:,,故,,.
故选:.
【答案点睛】
本题考查了数列值的计算,意在考查学生的计算能力.
7、B
【答案解析】
解出,计算并化简可得出结论.
【题目详解】
λ(),
∴,
∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.
故选B.
【答案点睛】
本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.
8、B
【答案解析】
根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.
所以,“是奇函数”“的图象关于轴对称”;
若函数是上的偶函数,则,所以,函数的图象关于轴对称.
所以,“的图象关于轴对称”“是奇函数”.
因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.
故选:B.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.
9、C
【答案解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.
【题目详解】
解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},
B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},
∴A∩B={0,1,2,3},
故选:C.
【答案点睛】
本题主要考查集合的交集运算,属于基础题.
10、B
【答案解析】
利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.
【题目详解】
因为(),所以,令(),则(),函数的对称轴方程为,所以,,所以,所以的值域为.
故选:B
【答案点睛】
本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.
11、C
【答案解析】
由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.
【题目详解】
由双曲线与双曲线有相同的渐近线,
可得,解得,此时双曲线,
则曲线的离心率为,故选C.
【答案点睛】
本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.
12、C
【答案解析】
先化简集合A,再与集合B求交集.
【题目详解】
因为,,
所以.
故选:C
【答案点睛】
本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据题意,设,则,所以,解得,所以,从而有 .
14、
【答案解析】
由数量积的运算律求得,再由数量积的定义可得结论.
【题目详解】
由题意,
∴,即,∴.
故答案为:.
【答案点睛】
本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键.
15、
【答案解析】
根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结